期刊文献+

一种基于HMM模型的音频场景分析技术 被引量:2

A Method of Audio Scene Analysis Based on Hidden Markov Model
下载PDF
导出
摘要 音频场景分析技术对机器自动感知环境特征具有重要的意义。考虑到Mel频率倒谱系数MFCC(Melfrequen-cycepstralcoefficient)在一定程度上可以模拟人耳的听觉感知特性,因此,提出用MFCC作为音频识别特征,通过隐马尔可夫模型进行音频场景分析的方法,该方法对7种典型场景的识别率在90%以上。 Audio scenes analysis technique plays a very important role for automatic awareness of environmental fea-tures.For the reasons of the auditory characters of human being,the MFCC(Mel frequency cepstral coefficient ),which can represent the auditory characters,is adopted as the feature of audio signal,and a method of audio scene analysis based on HMM is proposed.For typical seven audio scenes,the proposed method gets more than90%recognition rate.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第20期85-86,191,共3页 Computer Engineering and Applications
基金 哈尔滨工业大学跨学科交叉研究基金资助项目(批准号:HIT.MD.200001)
关键词 场景分析 音频信号 HMM模型 MEL频率倒谱系数 Scene Analysis,Audio signal,HMM Model,Mel frequency cepstral coefficient
  • 相关文献

参考文献6

  • 1贾磊 徐波.基于检测熵变化趋势的音频特征跳变点检测[A]..第6届全国人机语言通讯学术会议[C].,2001.19~24.
  • 2J Saunder.Real-time discriminative of broadcast speech/music[C].In: Proceedings of ICASSP96,1996:993-996.
  • 3E Scheirer,M Slaney.Construction and evaluation of a robust multifeature speech/music discriminator[C].In :Proceedings of ICASSP97, 1997 : 1331-1334.
  • 4Z Liu,J Huang,Y Wang.Audio feature extraction and analysis for scene classification[C].In:Proceedings of IEEE 1st Multimedia Work shop, 1997 : 343-348.
  • 5Darryl Godsmark,Guy J Brown.A blackboard architecture for computational auditory scene analysis[J].Speech Communication,1999;27: 351-366.
  • 6T Zhang,C Kuo.Audio content analysis for online audiovisual data segmentation and classification[J].IEEE Trans On Speech and Audio Processing, 2001 ; 9 (4) : 441 -457.

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部