摘要
在分歧理论和中心流形理论的基础上, 针对系统出现亚临界分歧的情况,借助不稳极限环,提出了分析这种在临界点附近的电力系统暂态稳定的方法。这种方法可计及任意复杂模型,与SBS(数值积分)方法相比,计算速度快,能给出明确的暂态稳定边界, 并能获得非常直观的稳定度的结果。文中系统地给出了数值计算中心流形变量高阶偏导数,求取2阶中心流形,形成分歧方程的方法,为构建一种新的特定条件下的暂态稳定边界提供了一个有效的工具。
On the basis of bifurcation theory and center manifold theory, a new algorithm for analyzing the transient stability of power systems nearby the critical point is presented by means of the unstable limit cycle when the subcritical bifurcation occurs in this paper.The algorithm is suitable for the complex power systems with a detailed system model. In contrast with SBS( step by step algorithm) The algorithm is possessed of a fast analyzing ability and it can provide a visual critical portion of the transient stability boundary. The algorithm is consisted of the numerical differentiation, the second order center manifold computing,and the bifurcation equation construction. Then an effective tool to search the special transient stability boundary is provided.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2003年第7期46-50,共5页
Proceedings of the CSEE
关键词
电力系统
暂态稳定边界
分歧理论
极限环
中心流形理论
Power system
Stability analysis
Transient stability boundary
Limit cycle
Bifurcation