期刊文献+

基于卡尔曼滤波的混沌系统辨识 被引量:3

Kalman filtering based method for identification of chaotic sequence
下载PDF
导出
摘要 通过建立一种对混沌时间序列进行有效预测的方法构架,试图实现尽可能长期的混沌预测,并重构序列的主动态方程,以便于进一步的分析研究.根据非线性系统的一般框架,首先基于所观测时间序列的基本混沌特性寻找一典型混沌方程作为参考的系统动态方程;然后利用扩展卡尔曼滤波递推得到一动态方程式来逼近系统特性,重构混沌相空间吸引子.仿真结果表明,该方法可以实现较高精度的多步预测并有效地重构系统方程. Aiming at presenting a new and effective methodology to predict chaotic time series, the authors try to make prediction as longer as possible and construct the governing system equations so that the further researches can be conducted. Based on a general nonlinear system structure, firstly, the typical chaotic equations as reference system equations that show similar chaotic characteristics with those of the observed time series are searched. Secondly, the general system equations are approximated to system characteristics using Kalman filtering based method and the attractors in phase spaces are reconstructed. Simulation results show that this method can realize multistep prediction with a higher precision, and construct the system equations effectively.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2003年第4期516-521,共6页 Journal of Dalian University of Technology
基金 国家重点基础研究"九七三"发展计划资助项目(G1999043602) 国家自然科学基金资助项目(重点项目50139020).
  • 相关文献

参考文献23

二级参考文献36

  • 1王文均,叶敏,陈显维.长江径流时间序列混沌特性的定量分析[J].水科学进展,1994,5(2):87-94. 被引量:44
  • 2张焕水,邓自立.广义离散随机线性系统自校正最优预报器[J].自动化学报,1996,22(1):49-57. 被引量:5
  • 3邓自立 胡萍.非递推最优状态估计的几种统一算法.1998中国控制与决策学术年会论文集[M].大连:大连海事大学出版社,1998.250-254.
  • 4王跃云 金钟骥.广义系统的反馈控制与极点配置方法[J].自动化学报,1988,14(4):285-288.
  • 5[1]Takens F. Detecting strange attractors in turbulence [A]. Dynamical Systems and Turbulence, Lecture Notes in Mathematics Vol. 898 [C]. Berlin: Springer-Verlag, 1981. 366~381.
  • 6[2]Casdagli M. Nonlinear prediction of chaotic time series [J]. Physica D, 1989, 35: 335~356.
  • 7[3]Cybenko G. Approximation by superposition of a single function [J]. Mathematics of Control, Signals and Systems, 1989, 2: 303~314.
  • 8[4]Takens F. On the numerical determination of the dimension of an attractor [A]. Dynamical Systems and Turbulence, Lecture Notes in Mathematics Vol. 898 [C]. Berlin: Springer-Verlag, 1981. 230241.
  • 9[5]Abarbanel D.I. Analysis of Observed Chaotic Data [M]. New York: Springer-Verlag, 1996.
  • 10邓自立,现代时间序列分析及其应用.建模、滤波、去卷、预报和控制,1989年

共引文献87

同被引文献31

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部