摘要
提出任意两个方阵 A,B的行 (列 )最简形右 (左 )最大公因子的概念 .证明任意两个 n阶方阵A,B的行 (列 )最简形右 (左 )最大公因子的存在唯一性 ,利用行 (列 )最简形右 (左 )最大公因子给出了 A,B的所有右 (左 )最大公因子构成的集合的表示 ,给出求它们的简便方法 .最后将其推广至多个矩阵情形 .
The right (left) greatest common divisor in row (column) simplest form as a new concept is offered to arbitrary two square matrices A and B. The unique existence of right ( left) greatest common divisor in row (column) simplest form for arbitrary two square matrices A and B of n order is proved. By applying right (left) greatest common divisor in row (column) simplest form, the representation of the set constructed by all right (left) greatest divisors of A and B can be given, and the simple method for solving them can also be given. The concept is extended to the circumstance of multiple matrices.
出处
《华侨大学学报(自然科学版)》
CAS
2003年第3期234-238,共5页
Journal of Huaqiao University(Natural Science)
关键词
矩阵
最大公因子
右最大公因子
行最简形右最大公因子
右公因子
matrix, right common divisor, right greatest common divisor, right greatest common divisor in row simplest form, row simplest form