期刊文献+

空间点集卷包裹算法的优化实现 被引量:4

An Optimized Implementation of the Gift-Wrapping Algorithm for Three-Dimensional Convex Hull
下载PDF
导出
摘要 凸包计算是计算几何研究中的基本问题之一 ,在许多领域均有应用。本文对求解空间点集凸包的卷包裹算法的实现问题进行了讨论。提出了 2点优化措施 ,并解决了实现中可能出现的共面点及由此带来的退化问题。 Convex hull computation is one of the fundamental problems in computational geometry , and is of wide application in many fields. In this paper the efficient implementation of the gift-wrapping method for computing the convex hull of 3D point sets is discussed. Two optimization methods to improve the efficiency are presented, and also proposed is a solution to the coplanar points and derived degeneracy problems, which might occur during the algorithm running.
出处 《青岛海洋大学学报(自然科学版)》 CSCD 北大核心 2003年第4期627-633,共7页 Journal of Ocean University of Qingdao
基金 山东省自然科学基金项目 (Y2 0 0 2 G12 )资助
关键词 计算几何 空间点集 卷包裹算法 凸包计算 优化 几何退化 计算机图形学 科学计算可视化 convex hull gift-wrapping algorithm three-dimensional point sets computational geometry
  • 相关文献

参考文献8

  • 1杨勋年,汪国昭.三维凸包的快速算法[J].浙江大学学报(自然科学版),1999,33(2):111-114. 被引量:10
  • 2Cinque L Di Maggio C.A BSP realization of Jarvis′algorithm [J].Pattern Recognition Letters,2001,22:147-55.
  • 3Sugihara K. Three-dimensional convex hull as a fruitful source of diagrams[J]. Theoretical Computer Science,2000, 235: 325~337.
  • 4Lin T H, Peng W J, Lu Y J. Identification of convexity as a common structure feature for structures generated for two short peptides [J]. Computers Chem, 1998, 22(4): 309~320.
  • 5Chand D R, Kaqur S S. An algorithm for convex polytopes [J]. JACM, 1970, 17(1): 78~86.
  • 6Sugihara K. Robust gift wrapping for the three-dimensional convex hull. [J] J Comput System Sci, 1994, 4:391~407.
  • 7Cinque L, Di Maggio C. A BSP realization of Jarvis'algorithm [J]. Pattern Recognition Letters, 2001, 22 : 147~55.
  • 8Preprata F P, Shamos M I. Computational Geometry An Introduction. [M]. New York: Springer Verlag, 1985.

共引文献9

同被引文献21

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部