期刊文献+

某些拟环的分解定理(英文)

Some Decomposition Theorems for Certain Near Rings
下载PDF
导出
摘要 得到了满足下列任何一个条件时拟环的分解定理 :( 1 ) xy=ym( xy) pyn;( 2 ) xy=ym( yx) pyn,这里 m=m( x,y)≥ 0 ,n=n( x,y)≥ 0 ,且 p=p( x,y) >1是整数 . The present paper presents the decomposition theorems for near rings satisfying any one of the conditions: (1) xy=y m(xy) py n; (2) xy=y m(yx) py n , where m=m(x,y)≥0, n=n(x,y)≥0 and p=p(x,y)>1 are integers.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2003年第3期276-279,共4页 Journal of Jilin University:Science Edition
关键词 拟环 分解定理 分配生成d-g拟环 D拟环 零对称 零交换拟环 distributively generated (d-g)-near ring D-near ring zero-symmetric near ring zero-commutative near ring
  • 相关文献

参考文献8

  • 1Jacobson N. Structure Theory of Algebraic Algebras of Bounded Degree[J]. Ann Math, 1945, 46: 695~707.
  • 2Wedderburn J H M. A Theorem on Finite Algebras[J]. Trans Amer Math Soc, 1905, 6:349~352.
  • 3Searcoid M O, MacHale D. Two Elementary Generalizations for Boolean Rings [J]. Amer Math Monthly, 1986,93: 121~122.
  • 4Ligh S, Luh J. Direct Sum of J-rings and Zero Rings[J]. Amer Math Monthly, 1989, 96: 40~41.
  • 5Bell H E, Ligh S. Some Decomposition Theorems for Periodic Rings and Near Rings[J]. Math J Okayama Univ, 1989, 31: 93~99.
  • 6Bell H E. Near Rings in Which Each Element is a Power of Itself[J]. Bull Austral Math Soc, 1970,2:363~368.
  • 7Reddy Y F, Murthy C V L N. Semi-symmetric Ideals in Near Rings[J]. Indian J Pure Applied Math, 1985,16: 17~21.
  • 8Clay J R. The Near Rings on Groups of Low Order[J]. Math Z, 1968, 104: 364~371.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部