摘要
用旋转法结合Fourier估计以及Littlewood-Paley理论给出了乘积空间上带粗糙核的极大奇异积分算子的Ω(x′,y′)dx′=0, y′∈Sm-1,∫Sm-1Lp有界性.证明了对于Ω∈Lq(Sn-1×Sm-1),其中q>1,∫Sn-1Ω(x′,y′)dy′=0, x′∈Sn-1,且b,h∈L∞(R1+),则积域上极大奇异积分算子∫∫|u|>ε1T*(f)=supb(|u|)h(|v|)Ω(u′,v′)|v|n|v|mf(x-u,y-v)dudvε1>0,ε2>0|v|>ε2为Lp(Rn×Rm)有界,其中1<p<∞.从而改进了以往的结果.
By rotation method, Fourier transform estimates and LittlewoodPaley theory, the Lp boundedness of maximal singular integral operators with rough kernels on product domains is got. It is proved that if Ω∈Lq(Sn-1×Sm-1),q>1,∫Sn-1Ω(x′,y′)dx′=0,y′∈Sm-1,∫Sm-1Ω(x′,y′)dy′=0,x′∈Sn-1,and b,h∈L∞(R1+), then the maximal singular integral operatorT*(f)=supε1>0,ε2>0∫∫|u|>ε1|v|>ε2b(|u|)h(|v|)Ω(u′,v′)|v|n|v|mf(x-u,y-v)dudvis Lp bounded for 1<p<+∞.
出处
《浙江大学学报(理学版)》
CAS
CSCD
2003年第4期361-364,共4页
Journal of Zhejiang University(Science Edition)
基金
973项目(No.G1999075105)
国家自然科学基金资助项目(No.19631080)
浙江省青年人才资金资助项目(No.RC97017).