期刊文献+

基于正交随机空间投影的数字音频扩谱水印 被引量:2

The Digital Audio Spread-Spectrum Watermarking Based on Random Orthogonal Projection
下载PDF
导出
摘要 数字音频水印是在原始音频样本中嵌入加密的标志信息以实现音频内容的注释和版权保护。对于任何一种音频水印的算法,必须满足水印的透明性和鲁棒性两个基本要求。提出了一种新的基于正交随机空间投影的数字音频扩谱水印算法,它将音频样本的中频子带重新排列成MxN的矩阵形式,并投影到随机的正交子空间上,然后将扩谱后的水印序列嵌入到相应的投影系数中,为了避免产生听觉上失真,算法中利用心理声学模型控制水印产生的听觉噪声。水印的检测过程可以通过扩谱序列的相关进行盲检测,实验结果表明采用该算法能够很好地保证水印在听觉上的不可觉察性,与现有的数字音频水印算法相比,该算法对数字音频信号的压缩、滤波、加噪声和加入回波等处理具有更好的鲁棒性。 Digital audio watermarking embeds secret information into the original audio to achieoe annotation and copyright protection. With respect to any audio watermarking scheme, it is very important to meet the requirements of transparency and robustness. A novel audio spread-spectrum watermarking scheme based on the random projection is proposed in this paper. By sing the discrete wavelet transform, the middle-frequency sub-band of the original audio signal is selected, and the coefficients are rearranged into the M × N matrix. Subsequently, an orthogonal random projection is performed on this matrix. Spread-spectrum watermarking sequences are then embedded into the coefficients in the projection domain. In order to avoid the auditory distortions, we employ the psychoacoustic model to control the auditory noise generated by the watermark. The detection process is the blind auto-correlation operation without referring to the original audio. Experimental results have shown that the embedded watermark is inaudible, and compared with the existing watermarking schemes, it is more robust against the audio compression, filtering, noise adding and echoing operations.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期566-572,共7页 Journal of Nanjing University(Natural Science)
关键词 数字音频扩谱水印 正交随机空间投影 版权保护 透明性 鲁棒性 心理声学模型 audio watermarking, orthogonal projection, psychoacoustic model, robustness, blind detection
  • 相关文献

参考文献14

  • 1Anderson R J, Petiteolas F A P. On the limits of steganography. IEEE Journal of Selected Areas in Communications, 1998, 16(4): 474--481.
  • 2Wu M, Craver S, Felten E, et al. Analysis of attacks on SDMI audio watermarks. IEEE International Confernece on Acoustic Speech, and Signal Processing, USA: Salt Lake City, 2001.
  • 3Gruhl D, Lu A, Bender W. Echo hiding. Proceedings of Information Hiding'96. Springer-Verlag, 1996:295-- 315.
  • 4JCox I, Kilian J, Leighton F T, et al. Secure spread spectrum watermarking for multimedia, IEEE Transactions Image Processing, 1997, 6 (12): 1 673--1 687.
  • 5Li X, Yu H H. Transparent and robust audio data hiding in cepstmm domain. International Conference On Multimedia and Expo 2000, USA: New York, 2000: 397--400.
  • 6Yeo I K, Kim H J. Modified patchwork algorithm: a novel audio watermarking scheme. Proceeding of International Conference On Information Technolqgy: Coding and Computing, USA: Las Vegas, 2001:237-- 242.
  • 7Swanson M D, Zhu B, Tewfik A H, et al. Robust audio watermarking using perceptual masking. Signal Processing, 1998, 66(3): 337--355.
  • 8Li X, Yu H H. Transparent and robust audio data hiding in subband domain. Proceeding of International Conference On Information Technology: Coding and Computing, USA: Las Vegas, 2000: 74-79.
  • 9Poomdaeng S, Toomnark S, Amomraksa T. Digital watermarking using psychoacoustic model. The 2002 International Technical Conference On Circuits/Systems, Computers and Communications, Thailand:Phuket, 2002.
  • 10Seok J W, Hong J W . Audio watermarking for copyright protection of digital audio data. Electronics Letters, 2001, 37(1): 60--61.

同被引文献31

  • 1Liang Y J, Farber N, Girod B. Adaptive playout scheduling and loss concealment for voice communications over IP networks. IEEE Transactions on Multimedia, 2003,5(4): 532-543.
  • 2Rarnjee R, Kurose J, Towsley D, et al. Adaptive playout mechanisms for packetized audio applications in wide-area networks. Proceedings IEEE Conference Computer Communication (IEEE-Infoeom) (Toronto, ON),1994: 680-688.
  • 3Kansal A, Karandikar A. Adaptive delay estimation for low jitter audio over intemet. Proceedings IEEE Global Telecommunication Conference (San Antonio, TX), 2001,4:2591-2595.
  • 4DeLeon P, Sreenan C. An adaptive predictor for media playout buffering. Proceedings IEEE International Conference Acoustics, Speech, Signal Processing (Phoenix, AZ), 1999:3097-3100.
  • 5Shallwani A, Kabal P. An adaptive playout algorithm with delay spike detection for real-time VOIP. Proceedings of IEEE Canadian Conference Electrical, Computer Engineering ( Montreal, QC), 2003: 997-1000.
  • 6Moon S B, Kurose J, Towsley D. Packet audio playout delay adjustment: Performance bounds and algorithms. Multimedia Systems, 1998, 6:17-28.
  • 7Sreenan C J, Chen J C, Agrawal P, et al. Delay reduction techniques for playout buffering. IEEE Transactions Multimedia, 2000,2 (2) : 88 -100.
  • 8Pinto J, Christensen K J. An algorithm for playout of packet voice based on adaptive adjustment of talkspurt silence periods. Proceedings 24th Conference on Local Computer Networks, Lowell, Massachusetts, 1999:224-231.
  • 9Marjamaki H, Kantola R. Performance evaluation of an IP voice terminal. Proceedings Fifth IFIP Conference on Intelligence in Networks, 1999:254-259.
  • 10Haykin S. Adaptive Filter Theory. 3^rd ed Upper Saddle River, NJ: Prentice Hall, 1996.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部