期刊文献+

完整力学系统的形式不变性与非Noether守恒量 被引量:5

Form Invariance and Non-Noether Conserved Quantity of Holonomic Mechanical System
下载PDF
导出
摘要 研究完整力学系统的由形式不变性导致的非Noether守恒量.建立系统的运动方程和形式不变性的判据方程.给出形式不变性为Lie对称性的充分必要条件.得到形式不变性导致非Noether守恒量的条件以及守恒量的形式.举例说明结果的应用. NonNoether conserved quantity led by form invariance for holonomic systems is studied. Equations of motion and criterion equations of the form invariance are established. The necessary and sufficient condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a conserved quantity and the form of the conserved quantity are obtained. An example is given to illustrate the application of the result.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2003年第3期271-273,共3页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(10272021)
关键词 分析力学 完整系统 形式不变性 守恒量 analytical mechanics holonomic system form invariance conserved quantity
  • 相关文献

参考文献8

  • 1梅凤翔.具有可积微分约束的力学系统的Lie对称性[J].力学学报,2000,32(4):466-472. 被引量:11
  • 2Mei Fengxiang. Nonholonomic mechanics[J]. ASME Appl Mech Rev, 2000,53(11) :283--305.
  • 3Zhang Ruichao, Chen Xiangwei, Mei Fengxiang.Effects of non-conservative forces on Lie symmetries and conserved quantities of a Lagrange system [J].Chinese Physics, 2000,9 (11) : 801-- 804.
  • 4Mei Fengxiang. Lie symmetries and conserved quantities of constrained mechanical systems[J]. Acta Mechanica, 2000,141(3-4) :135--148.
  • 5梅凤翔.Form Invariance of Lagrange System[J].Journal of Beijing Institute of Technology,2000,9(2):120-124. 被引量:57
  • 6Wang Shuyong, Mei Fengxiang. Form invariance and Lie symmetry of equations of non-holonomic system[J]. Chinese Physics, 2002,11(1):5--8.
  • 7Hojman S A. A new conservation law constructed without using either Lagrangians or Hamiltonians[J]. J Phys A: Math Gen, 1992,25:L291--L295.
  • 8Pillay T, Leach P G L. Comment on a theorem of Hojman and its generalizations [J]. J Phys A: Math Gen, 1996,29:6999--7002.

二级参考文献8

共引文献63

同被引文献65

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部