期刊文献+

关于一致凸Banach空间的注记 被引量:4

Remarks on Uniformly Convex Banach Spaces
下载PDF
导出
摘要 给出了Banach空间一致凸的几个新的充要条件.定理 设1<p<+∞,λ,μ∈(0,1),λ+μ=1,X是Banach空间,则下列条件等价: X是一致凸的; 对任意ε>0,存在δ>0,使得当‖x‖≤1,‖y‖≤1,‖x-y‖≥ε时,有‖λx+μy‖≤1-δ   对任意满足‖xn‖≤1,‖yn‖≤1,limn∞‖λxn+μyn‖1的序列{xn},{yn}都有limn∞‖xn-yn‖=0   对任意ε>0,存在δ>0,使得当‖x‖≤1,‖x-y‖≥ε时。 Some new sufficient and necessary conditions are given for uniformly convex Banach spaces. The main result is the following theorem.Theorem Suppose that 1<p<+∞, λ,μ∈(0, 1), λ+μ=1 and X is a Banach space. Then the following conditions are equivalent:? X is uniformly convex;? For every ε>0 there exists δ>0 such that‖λx+μy‖≤1-δfor all ‖x‖≤1, ‖y‖≤1 satisfying ‖x-y‖≥ε;? For every sequence {xn}, {yn} satisfying ‖xn‖≤1, ‖yn‖≤1 and limn∞‖λxn+μyn‖1, one has limn∞‖xn-yn‖=0 ? For every ε>0 there exists δ>0 such that‖λx+μy‖p<λ‖x‖p+μ‖y‖p-δfor all ‖x‖≤1 and y∈X satisfying ‖x-y‖≥ε.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期540-543,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(19871067) 教育部科学技术重点项目 高等学校优秀青年教师教学科研奖励计划项目.
关键词 一致凸BANACH空间 充要条件 正规结构 Bochner可积空间 自反空间 Banach space uniformly convex sufficient and necessary condition
  • 相关文献

参考文献7

  • 1俞鑫泰.Banach空间几何理论[M].上海:华东师范大学出版社,1984..
  • 2邓磊,夏霞.一致凸Banach空间的一个特征性质[J].西南师范大学学报(自然科学版),2003,28(3):341-343. 被引量:7
  • 3Clarkson J A. Uniformly Convex Spaces [J]. Trans Amer Math Soc, 1936, 40:396 - 414.
  • 4Milman D P. On Some Criteria for the Regularity of Spaces of Type (B) [J]. Dokl Akad Nauk SSSR, 1938, 20: 243- 246.
  • 5Pettis B J. A Proof that Every Uniformly Convex Space is Reflexive [J]. Duke Math J, 1939, 5:249-253.
  • 6Day M M. Reflexive Banach Spaces not Isomorphic to Uniformly Convex Spaces [J]. Bull Amer Math Soc, 1941, 47: 504- 507.
  • 7Diestel J. Geometry of Banach Spaces-Selected Topics [M]. Berlin: Springer-Verlag, 1975.

二级参考文献5

  • 1俞鑫泰.Banach空间几何理论[M].上海:华东师范大学出版社,1984..
  • 2Clarkson J A. Uniformly convex spaces [J]. Trans Amer Math Soc, 1936, 40:396 -414.
  • 3Curarii V I. On the differential properties of the modulus of convexity in a Banach space (in Russian) [J]. Mat Issled, 1976, 2: 141- 148.
  • 4Milman J I. Geometric theory of Banach space H. Geometry of the unit ball [J] . Uspehi Mat Nauk, 1971, 26:73 - 150.
  • 5Goebel K, Kirk W A. Topics in metric fixed point theory [M]. Cambridge: Press Syndicate of the University of Cambridge, 1990. 110.

共引文献18

同被引文献19

  • 1魏林,吴行平.一致凸Banach空间的一个新的特征性质[J].西南师范大学学报(自然科学版),2006,31(3):1-4. 被引量:2
  • 2俞鑫泰.Banach空间几何理论 [M].上海:华东师范大学出版社,1984.240-242.
  • 3J. A. Clarkson, Uniformly Convex Space, Trans. Amer. Math. Soc. 1936, 40: 396-414.
  • 4O. Hanner, On the Uniform Convexity of and, Ark. Mat. 1956, 3: 239-244.
  • 5J.Diestel, Geometry of Banach Spaces--Selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975.
  • 6G. Kasparov and Guoliang Yu, The Coarse Geometric Novikov Conjecture and Uniform Convexity, arXiv: Math/0507599 V1 [math. OA] 28 Jul 2005.
  • 7B. Kekka, P. de La Harpe and A. Valette, Kazhdan's Property T, 1- 145, Cambridge University Press, 2008.
  • 8俞鑫泰.Banach空间几何理论[M].上海:华东师范大学出版社,1984..
  • 9Clarkson J A. Uniformly Convex Spaces[J]. Trans Amer Math Soc, 1936, 40: 396- 414.
  • 10Milman D P. On Some Criteria for the Regularity of Spaces of Type (B) [J]. Dokl Akad Nauk SSSR, 1938, 20: 243 - 246.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部