期刊文献+

平面上两个点集间距离的O(nlogn)算法

An O(nlogn) Algorithm for the Shortest Paths between Two Set of Points in the Plane
下载PDF
导出
摘要 定理"平面上两个点集的距离所在边是Voronoi图的Delaunay三角剖分中一条边"是本文的核心,在该定理基础上,本文提出如何用Voronoi图的Delaunay三角剖分算法求平面上两个点集的距离,并分析其复杂性. The theorem that the edge on which the distance between two set of points in the plane decides is one of the edges of the Voronoi disgrams's Delaunay triangulations is the key of this paper. On the basis of this theorem,the paper proposes how to compute the distance between two set of points in the plane by means of Voronoi dasgrams's Delaunay triangulations.Moreover,it also analyzes the complexity of the algorithm.
出处 《新疆大学学报(自然科学版)》 CAS 2003年第3期236-238,共3页 Journal of Xinjiang University(Natural Science Edition)
关键词 点集 距离 O(nlogn)算法 VORONOI图 DELAUNAY三角剖分 时间复杂度 计算机图形学 convex hull Voronoi diagrams Delaunay triangulations the nearest neighbor problem minimum weight triangulations
  • 相关文献

参考文献1

  • 1Thomas H. Cormen. INTRODUCTION TO ALGORITHMS[M]. The MIT Press,2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部