期刊文献+

陶瓷材料的抗热震参数 被引量:1

Thermal shock resistance parameters of ceramic materials
下载PDF
导出
摘要 通过求解无限大平板第三类边界条件的瞬态温度场及瞬态热应力场,分别建立了表面冷却条件下引起平板表面临界应力的临界温差ΔTc的表达式和表面加热条件下引起平板中心面临界应力的临界温差ΔTc′的表达式.计算结果表明,无限大陶瓷平板的ΔTc远远小于相同Biot模数条件下的ΔTc′,而且表面冷却条件下表面达到临界热应力的量纲一时间也小于表面加热条件下中心面达到临界热应力的量纲一时间. By means of the calculations of transient temperature fields and transient thermal stresses for infinite plate under the convective boundary condition, the formula of critical temperature difference ΔTc leading to the critical stress at the surface in the case of surface cooling and the formula of critical temperature difference ΔTc′ leading to the critical stress at the center in the case of surface heating for infinite ceramic plate are obtained respectively. The calculation results reveal that ΔTc is much lower than ΔTc′ for infinite ceramic plate under the same Biot number, furthermore the dimensionless time for the surface to attain the critical thermal stress in the case of surface cooling is shorter than that for the center to attain the critical thermal stress in the case of surface heating also.
出处 《山东大学学报(工学版)》 CAS 2003年第3期231-234,共4页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金(50105011) 全国优秀博士学位论文作者专项资金(200231) 教育部留学回国人员科研启动基金(教外司留[2002]247)资助项目.
关键词 陶瓷材料 瞬态温度场 瞬态热应力 抗热震性 ceramic materials transient temperature field transient thermal stresses thermal shock resistance
  • 相关文献

参考文献3

  • 1KINGERY W D. Factors affecting thermal shock resistance of ceramic materials[J]. J Am Ceram Soc, 1955, 38(1): 3 ~15.
  • 2HASSELMAN D P H. Elastic energy at fracture and surface energy as design criteria for thermal shock[J]. J Am Ceram Soc, 1963, 46(11): 535-540.
  • 3HASSELMAN D P H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics[J]. J Am Ceram Soc, 1969, 52(11): 600~604.

同被引文献16

  • 1KINGERY W D. Factor affecting thermal stress resistance of ceramic materials[J]. Journal of the American Ceramic Society, 1955, 38: 3-15.
  • 2HASSELMAN D P H. Thermal shock by radiation heating[J]. Journal of the American Ceramic Society, 1963, 46(5) : 229-304.
  • 3HASSELMAN D P H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics[J]. Journal of the American Ceramic Society, 1969, 52(11): 600-604.
  • 4EVANS A G. Thermal shock fracture in ceramic materials[J]. Proceedings of the British Ceramic Society, 1974, 25: 217-237.
  • 5EMERY A F. Thermal stresses in severe environment[M]. New York: Plenum Press, 1980: 95-121.
  • 6SCHMII"I" N, BURR A, BERTHAUD Y, et al. Micromechanics applied to the thermal shock behavior of refractory ceramics[ J ]. Mechanics of Materials, 2002, 34(11) : 725-747.
  • 7LI Weiguo, YANG Fan, FANG Daining. Thermal shock modeling of ultra-high temperature ceramics under active cooling [ J ]. Computers and Mathematics with Applications, 2009, 58 (11/12) : 2373-2378.
  • 8HAMIDOUCHE M, BOUAOUADJA N, OLAGNON C G, et al. Thermal shock behaviour of mullite ceramic[J]. Ceramics International, 2003, 29 (6) : 599-609.
  • 9HAN Jiecai, WANG Baolin. Thermal shock resistance of ceramics with temperature-dependent materialproperties at elevated tem perature[ J]. Acta Materialia, 2011,59(4): 1373-1382.
  • 10SHERMAN D. SCHLUMM D. Thickness effect in thermal shock of alumina ceramics[J]. Scripta Materialia, 2000, 42(8): 819-825.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部