期刊文献+

基于RBF神经网络的青霉素发酵过程的模型辨识 被引量:1

Model building in the penicillin fermentation process based on RBF neural networks for identification
下载PDF
导出
摘要 分析了目前青霉素发酵过程中存在的问题.基于RBF神经网络的辨识方法,建立了青霉素发酵过程模型.以动力学模型为基础产生教师数据,采用遗传算法对网络进行训练,建立了基于RBF神经网络的发酵过程模型,并进行了仿真实验验证.实验结果表明,该辨识模型对青霉素补料分批培养过程具有实用价值. A new way of model building for identification based on RBF neural networks in the penicillin fermentation process was presented .The penicillin fermentation process is a process of time varying and nonlinear feature .RBF neural networks have the ability to get a nonlinear function. Genetic algorithms were used to train the neural networks .A simulation was made to prove this fermentation model . The result of the simulation shows that the model is practicable.
出处 《中南工业大学学报》 CSCD 北大核心 2003年第4期342-344,共3页 Journal of Central South University of Technology(Natural Science)
基金 国家自然科学基金资助项目(60274060)
关键词 青霉素 发酵 RBF神经网络 遗传算法 penicillin fermentation RBF neural networks genetic algorithm
  • 相关文献

参考文献4

  • 1张曾科,吉吟东,朱善君.青霉素发酵生产过程计算机智能控制[J].化工自动化及仪表,1997,24(2):13-15. 被引量:6
  • 2Thibault J. On-line prediction of fermentation variables using neural networks[J]. Biotechnol Bioeng, 1990,36 : 1041-1048.
  • 3Breusegn V V. Adaptive neural models for on-line prediction in fermentation[J]. Can J Chem Eng , 1991,69:481-487.
  • 4Cuthrell J E, Biegler L T. Simultaneous optimization and solution methods for batch reactor control profiles[J].Comput Chem Eng, 1989,13:49-62.

二级参考文献1

共引文献5

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部