摘要
将变精度粗集模型应用于故障诊断专家系统的知识获取和知识库的更新;利用变精度知识约简和正则条件熵进行故障特征选择,实现最简诊断知识的获取,以建立专家系统知识库;利用属性的相对依赖性实现知识库的维护与更新.滚动轴承故障诊断的实验结果表明,该方法有效地克服了传统规则式故障诊断专家系统的不足,实现了故障诊断功能.
A variable precision rough set model approach was proposed for knowledge acquisition and update of fault diagnosis expert system. Knowledge reduction with variable accuracy β, and regular conditional entropy were utilized for the knowledge acquisition to establish the knowledge base. The maintenance and update of the base were realized by the relative dependency. Simulation of rolling bearings fault diagnosis illustrates that the approach can compensate for the defects of rulebased ES and carry out the fault diagnosis effectively.
出处
《中南工业大学学报》
CSCD
北大核心
2003年第4期451-454,共4页
Journal of Central South University of Technology(Natural Science)
基金
国防科技行业重点预研基金资助项目(40404070102)
关键词
故障诊断
VPRS模型
专家系统
信息熵
fault diagnosis
variable precision rough set model
expert system
information entropy