期刊文献+

基于RBF神经网络的非线性系统故障诊断 被引量:3

Fault diagnosis based on RBF neural network in a class of nonlinear systems
下载PDF
导出
摘要 针对一类含模型不确定性的非线性系统,提出了具有强鲁棒性和高灵敏度的在线故障检测与诊断方法.其中,系统只有输入、输出可检测,故障是关于输入和状态的非线性函数.非线性在线估计器用于估计系统不确定部分,同时监视系统是否发生故障,估计故障的大小.仿真结果表明,故障诊断算法稳定. A new online fault detection and diagnosis method which processes powerful robustness and high sensitivity for a class of nonlinear system with model uncertainty is proposed. The only measurable variables are the inputs and outputs of the system. The faults are assumed to be functions of the inputs and the states of the system. A nonlinear online approximator is utilized to estimate uncertain parts in the system, simultaneously, to monitor the faults and estimate the fault value. The diagnosis algorithm is stable. Finally, a simulation example is presented to illustrate the effectiveness of the method.
出处 《中南工业大学学报》 CSCD 北大核心 2003年第4期455-458,共4页 Journal of Central South University of Technology(Natural Science)
基金 辽宁省自然科学基金资助项目(002013)
关键词 故障诊断 神经网络逼近器 鲁棒性 灵敏度 fault diagnosis neural network approximator robustness sensitivity
  • 相关文献

参考文献8

  • 1Isermann R. Process fault diagnosis with parameter estimation observers[A]. Proe IFAC Digital Computer Application to Process Control[C]. Vienna: Elsevier Science, 1984:51-60.
  • 2Yang H, Saif M. Fault detection and isolation for a class of nonlinear systems using an adaptive observer[A]. Kheir N,eds. Proceedings of ACC[C]. New Mexico: American Automatic control Council, 1997: 463-467.
  • 3Edwards C, Sarah K. Sliding mode observers for fault detection and isolation[J]. Automatica, 2000, 36: 541-553.
  • 4WEN Chen, Sail M, Yeng-Chai S. A variable structure adaptive observer approach for actuator fault detection and diagnosis in uncertain nonlinear systems[A]. Ulsoy A G, eds. Proceedings of the American Control Conference[C]. Chicago: American Automation Control Council, 2000 : 2674-2678.
  • 5Vemuri A T, Polycarpou M M. On-line approximation methods for robust fault detection[A]. Gertler J J, eds. Procl 3 th World Congr. lnt Fed Automatic Control[C]. San Francisco:Elserier Science, 1996 : 319-324.
  • 6Demetriou M A, Marios M. Polycarpou. Incipient Fault diagnosis of dynamical systems using online approximators[J].IEEE Transactions on Automatic Control, 1998, 43 (11):1612-1617.
  • 7Chan C W, Cheung K C, Wang Y, etal. On-line fault detection and isolation of nonlinear system[A]. Yurkovich S, eds.Proceedings of the American Control Conference[C]. California: American Automatic Control Council, 1999: 1215-1219.
  • 8Park J, Sandberg T W. Universal approximation using radialbasis function networks[J]. Neural Computing, 1991,3(2) :246-257.

同被引文献20

  • 1李令莱,周东华.基于解析模型的非线性系统鲁棒故障诊断方法综述[J].信息与控制,2004,33(4):451-456. 被引量:20
  • 2谭文,王耀南,黄丹,曾照福,周少武,刘祖润.混沌系统的混合遗传神经网络控制[J].控制理论与应用,2004,21(4):495-500. 被引量:2
  • 3Zhuhong ZHANG.Adaptive control of uncertain time-delay chaotic systems[J].控制理论与应用(英文版),2005,3(4):357-363. 被引量:1
  • 4张明君,张化光.遗传算法优化的RBF神经网络控制器[J].电机与控制学报,2007,11(2):183-187. 被引量:19
  • 5P M Frank, X Ding. Frequency domain approach to optimally robust residual generation and evaluation for model based fault diagnosis [ J]. Automatica, 1994,30 : 789 - 904.
  • 6C Commault, J M Dion, O Sename, R Motyeian. Observer - Based Fault Detection and Isolation for Structured Systems [ J ]. IEEE Ansactions on Automatic Control, 2002,47 (12) :2074 - 2078.
  • 7Rolf Isermaaa. Model - bused fault - detection and diagnosis - status and applications [ J ]. Annual Reviews in Control, 2005,29 : 71 - 85.
  • 8Jeonju. A Neural Network Method for Induction Machine Fault Detection with Vibration Signal[ C]. ICCSA 2005, LNCS 3481. 1293 - 1302.
  • 9Jan Koszlaga and Pawel Strumillo. Discovery of Linguistic Rules by Means of RBF Network for Fault Detection in Electronic Circuits [ C]. ICAISC 2004, LNAI 3070. 223 -228.
  • 10M Karpenkoa, N Sepehri, D Scuseb. Diagnosis of process valve actuator faults using a multilayer neural network [ J ]. Control Engineering Practice, 2003,11 : 1289 - 1299.

引证文献3

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部