期刊文献+

一个基于对象的图像检索系统:Basestar 被引量:2

A New Image Retrieval System Based on Object:Basestar
下载PDF
导出
摘要 图像检索是近年为适应国际互连网以及图像数据库高速发展而出现的一门新技术。该文建立了一个基于对象的图像检索系统-Basestar。该系统针对传统图像检索方法偏重图像整体特征,忽略用户对图像感知等缺点,采用用户参与方式,自动准确分割对象,并在此基础上利用对象颜色和形状特征对图像实现检索。实验结果表明该系统取得了良好的检索效果。 By the growing of image database and Internet,multimedia data grow startling.How to manage and index these data becomes a current urgent question.Image retrieval technology is introduced in this area.In this paper a new image retrieval system based on object named as Basestar is discussed.Many image retrieval systems pay more attention to the whole image features.However Basestar system pays more attention to human perception.Basestar can segment the object based on the user's perception.Based on the segmentation result,the image features-color and shape of the segmentation result are extracted to compose of image feature vector.By the experiment Basestar system has better retrieval performance.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第23期45-48,101,共5页 Computer Engineering and Applications
基金 科技部创新基金项目(编号:01C26224210708)
关键词 图像检索 图像分割 不变性 感知系统 Image retrieval,Image segmentation,Invariant ,Perceptive system
  • 相关文献

参考文献11

  • 1李勍,章毓晋.WWW上基于内容的图象检索系统[J].电子技术应用,1999,25(12):11-13. 被引量:2
  • 2卢汉清,孔维新,廖明,马颂德.基于内容的视频信号与图像库检索中的图像技术[J].自动化学报,2001,27(1):56-59. 被引量:30
  • 3张磊,林福宗,张钹.基于支持向量机的相关反馈图像检索算法[J].清华大学学报(自然科学版),2002,42(1):80-83. 被引量:39
  • 4樊昀,王润生.面向内容检索的彩色图像分割[J].计算机研究与发展,2002,39(3):376-381. 被引量:21
  • 5M Flickner,H Sawhney,W Niblack et al.Query by Image and Video Content :The QBIC System[J].IEEE Computer, 1995 ;28(9) :23-32.
  • 6Pentland A,Picard R,Sclaroff S.Photobook:Content-based Manipulation of Image Databases[M].1994.
  • 7J R Smith,S--F Chang.Querying by color regions using the VisualSEEk content-based visual query system[C].In:Intelligent Multimedia Informarion Retrieval ,LICAI, 1996.
  • 8Y Ohta,T Kanade,T Sakai.Color information for region segmentation[J]. Comput Graphics Image Process, 1980; 13 : 222-241.
  • 9J R Bach,C Fuller,A Gupta et al.The virage image search engine: An open framework for image management[C].In:Proceedings of SPIE, Storage and Retrieval for Still Image and Video Databases IV ,San Jose, CA, USA, 1996-02:76-78.
  • 10Alain Tremeau,Nathalie BoreLA region growing and merging algorithm to color segmentation[J].Pattern recognition, 1997 ; 30(7) : 1191-1203.

二级参考文献38

  • 1白雪生,徐光佑,JeseS.Jin.基于内容的图象检索及其相关技术的研究[J].机器人,1997,19(3):231-240. 被引量:26
  • 2丁险峰 孔维新 等.基于许瓦兹表示的形状检索[J].计算机工程与科学,1998,20(1):121-123.
  • 3[1]Rui Y,Huang T S,Ortega M,et al.Relevance feedback: A power tool in int eractive content-based image retrieval [J].IEEE Trans on Circuits and Syst fo r Video Tech,1998,8(5): 644-655.
  • 4[2]Rui Y,Huang T S.A novel relevance feedback technique in image retrieval [A].Proc 7th ACM Int Conf on Multimedia (part 2) [C].Orlando,Florida,199 9.67-70.
  • 5[3]Ishikawa Y,Subramanya R,Faloutsos C.Mindreader: Query Databases Through Multiple Examples [A].Proc 24th Int Conf on Very Large Databases [C].New York,1998.218-227.
  • 6[4]Vapnik V.The Nature of Statistical Learning Theory [M].New York: Sprin ger Verlag,1995.
  • 7[5]Burges C J C.A tutorial on support vector machines for pattern recognitio n [J].Data Mining and Knowledge Discovery,1998,2(2): 1-47.
  • 8[6]Osuna E.Applying SVMs to face detection [J].IEEE Intelligent Systems,1998,13(4): 23-26.
  • 9[7]Chapelle O,Haffner P,Vapnik V.Support vector machines for histogram-bas ed image classification [J].IEEE Trans on neural networks,1999,10(5): 1057 -1064.
  • 10[8]Huang J,Kumar S R,Mitra M,et al.Image indexing using color correlogram s [A].Proc.of IEEE conf.on Computer Vision and Pattern Recognition [C].S an Juan,Puerto Rico,1997.762-768.

共引文献86

同被引文献35

  • 1Vapnik V N. The Nature of Statistical Learning Theory [ M]. NY:Springer-Verlag, 1995.
  • 2Cherkassky V, Mulier F. Learning from Data: Concepts Theory and Methods [ M]. NY: John Viley & Sons, 1997.
  • 3Stan Z Li, Lie Gu. Kernel Machine Based Learning for Multi-View Face Detection and Pose Estimation [ R ]. Technical Report MSR-TR-2001-07, 2001. 674-679.
  • 4Kwang in Kim,et al. Support Vector Machines for Texture Classification[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,124( 11 ) : 1542- 1550.
  • 5Vapnik V. Statistical Learning Theory [M]. NY: Wiley, 1998.
  • 6Vapnik V, Levin E, Lecun Y. Measuring the VC-Dimension of a Learning Machine [ J ]. Neural Computation, 1994,6 ( 5 ) : 851 - 876.
  • 7Rocchio J J. Relevance Feedback in Information Retrieval [ M ]. NJ:Prentice Hall, 1971. 313-323.
  • 8Rui Y Huang, et al. Content-based Image Retrieval with Relevance Feedback in MARS [ J]. ICIP97,1997,3(2) : 815-818.
  • 9Vapnik V N. The Nature of Statistical Learning Theory [M]. NY: Springer-Verlag, 1995.
  • 10Cherkassky V,Mulier F. Learning from Data: Concepts Theory and Methods [M]. NY: John Viley&Sons, 1997.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部