期刊文献+

基于信息熵构造判定树的数据挖掘算法的设计与实现 被引量:13

Research and Implementation of Data Mining Based on Information Entropy Decision_tree
下载PDF
导出
摘要 该文讨论了信息量或熵构造判定树的数据挖掘算法,阐明了算法中如何处理高分枝属性、数据清理及剪枝等关键环节,并说明了具体实现方法。 An algorithm for data mining based on information entropy decision_tree is introduced in this paper.The keys such as high -branching,numberic attribute,data cleaning and pruning are analysed.The classification method of big sample is presented in this paper.In the end the research and implementation for algorithm is given.
机构地区 长沙电力学院
出处 《计算机工程与应用》 CSCD 北大核心 2003年第23期180-182,213,共4页 Computer Engineering and Applications
基金 湖南省科委项目(编号:011030020105)
关键词 数据挖掘 判定树 信息增益 信息熵 Data mining,Decision_tree,Information gain,Information entropy
  • 相关文献

参考文献3

  • 1S M Weiss,C A Kulikowski.Computer Systems That Learning:Classification and prediction Methods from statistics ,Neural Nets ,Machine Learning,and Expert Systems[M].San Mateo,CA:Morgan Kaufmann,1991.
  • 2S K Murthy.Automatic construction of decision trees from data:A multidisciplinary survey[J].Data Mining and Knowledge Discovery,1998; 2: 345-389.
  • 3J Gehrke,R Ramakrishnan,V Ganti.Rainforest:A framework for fast decision tree construction of large datasets[C].In:Pvoc 1998 Int Conf Very large Data Bases,New York,1998-08:416~427.

同被引文献68

引证文献13

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部