摘要
在研究基于实数径向基函数 (RBF)神经网络均衡器结构的基础上 ,提出了几种新的适用于QAM信号的复数RBF神经网络自适应均衡器结构 ,并给出了相应的自适应算法。新的均衡器是充分利用了所得到的信号信息及RBF的特性而分别构成的。理论分析和计算机仿真结果都表明 。
Several new complex equalizers applicable to QAM signals are presented. The equalizers, fully incorporating the obtained signal information and RBF's features, are constructed by radial basis function neural networks (RBFNs). The algorithms for them are also given. Theoretical analysis and experimental results show that the new algorithms have a better convergence property than those of the complex RBFNs based equalizers available.\;
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2003年第7期848-850,859,共4页
Systems Engineering and Electronics
基金
陕西省自然科学基金资助课题 ( 2 0 0 0SL0 2 )
关键词
神经网络
径向基函数
复数自适应均衡器
Neural networks
Radial basis function
Complex adaptive equalizer