期刊文献+

高斯-厄米特粒子滤波器 被引量:77

The Gauss-Hermite Particle Filter
下载PDF
导出
摘要 针对非线性、非高斯系统状态的在线估计问题 ,本文提出一种新的基于序贯重要性抽样的粒子滤波算法 .在滤波算法中 ,我们用一簇高斯 厄米特滤波器 (GHF)来产生重要性概率密度函数 .此概率密度在系统状态的转移概率的基础上融入最新的观测数据 ,因此更接近于系统状态的后验概率 .理论分析与实验结果表明 :在观测模型具有高精度的场合或似然函数位于系统状态转移概率的尾部时 ,用GHF产生重要性概率密度函数的粒子滤波即高斯 厄米特粒子滤波 (GHPF)的性能要明显地优于标准的粒子滤波、扩展的卡尔曼滤波、GHF . In this paper,a new particle filter based on sequential importance sampling (SIS) is proposed for the on-line estimation problem of non-Gauss nonlinear systems.In the new algorithm,a bank of Gauss-Hermite filter (GHF) is used for generating the importance density function.The density function integrates the new observations into system state transition density,so it can match the statea posteriori density well.As a result,while the likelihood function is situated on the tail of state transition density or observation model has higher precise,the theoretical analysis and experimental results show that the new particle filter outperforms obviously the standard particle filter and the other filters such as the extended Kalman filter (EKF),the GHF.
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第7期970-973,共4页 Acta Electronica Sinica
基金 国家创新研究群体科学基金 (No 60 0 2 4 30 1 ) 国家自然科学基金 (No 60 1 750 0 6)
关键词 状态估计 粒子滤波器 高斯-厄米特滤波 序贯重要性抽样 重要性概率密度函数 state estimation particle filter Gauss-Hermite filter sequential importance sampling importance density function
  • 相关文献

参考文献9

  • 1南京大学数学系编.数值逼近方法[M].北京:科学出版社,1978..
  • 2G Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models [J] .Journal of Computational and Graphical Statistics, 1996,5:1 - 25.
  • 3Avitzour. A stochastic simulation Bayesian approach to multitarget tracking [A] .IEE Proceedings on Radar,Sonar and Navigation [C].UK: lEE, 1995.
  • 4M lsard, Blake. Contour tracking by stochastic propagation of conditional density [ A ]. European Conference on Computer Vision [ C ]. UK:Cambridge, 1996. 343 - 356.
  • 5I Kazuftmfi, K-Q Xiong. Gaussian filters for nonlinear filtering problems[ EB/OL]. available from http://www, researchindex, com.
  • 6S J Julier,J K Uhlmann. A new extension of the Kalman filter to nonlinear systems [ A ]. Proceedings of AeroSense: The 11th International Symposium on Aerospace/Defence Sensing, Sinmlation and Controls[ C], Florida: ISADSSC, 1997.
  • 7A Doucet. On Sequential Simtdafion-Based Methods for Bayesian Filtering [ EB/OL]. available from http://www, researchindex, com.
  • 8R Van der Merwe. A Doucet the Unscented Particle Filter, Advances in Neural Information Processing Systems [M]. M IT,2000.
  • 9N J Gordon, D J Salmond, A F M Smith. A novel approach to nonlinear and non-Ganssian Bayesian state estimation [ A ]. IEE Proceedings-F[C]. UK: IEE, 1993,.

同被引文献791

引证文献77

二级引证文献691

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部