期刊文献+

高斯噪声中的参数盲估计 被引量:3

Blind Estimation of Parameters in Gaussian Noise
下载PDF
导出
摘要 盲信号处理方法中常忽略噪声的影响 ,而实际问题中噪声的影响是存在的 .本文主要讨论了在协方差矩阵未知的加性高斯噪声中混合系数的盲估计问题 .本文以最大似然估计为基础 ,提出一种求解参数的最优化算法 ,给出了混合矩阵和协方差矩阵的计算式 .采用高斯混合模型 (GMM)来逼近源信号的概率密度函数 ,简化了算法中的积分 ,导出了一种基于EM算法的迭代式 .仿真表明 ,算法不仅能稳定收敛 。 Generally, some methods of blind signal processing ignore noise, however, noise affects the performance of algorithms, especially seriously in some areas. This paper provides solutions to the problem that mixing matrix is estimated blindly in Gaussian noise with unknown covariance. Based on Maximum Likelihood estimation, the equations are given for solving the mixing matrix and covariance matrix. Gaussian Mixture Model (GMM) is used to approximate the pdf of sources and results in a practical EM algorithm. Computer simulation shows that this algorithm is convergent and has good performance in low SNR.
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第7期974-976,共3页 Acta Electronica Sinica
关键词 高斯噪声 盲信号处理 EM算法 高斯混合模型 Algorithms Approximation theory Computer simulation Gaussian noise (electronic) Mathematical models Matrix algebra Maximum likelihood estimation Probability density function Signal processing
  • 相关文献

参考文献8

  • 1A J Bell,T J Sejnowski. An information-maximization approach to blind separation and blind deconvolution [J]. Nodal Computation, 1995,7:1129 - 1159.
  • 2P Comon. Independent component analysis: a new concept? [J]. Signal Processing, 1994,36(3) :287 - 314.
  • 3S Amari, A Cichocki. Adaptive blind separation processing-neural network approaches [J] .Proc of IEEE, 1998,86(10) :2026 - 2048.
  • 4A Hyvarinen. Independent component analysis in the presence of gaussian noise by maximizing joint likdihood [J]. Neurocomputing, 1998,22:49 - 67.
  • 5A Hyvarinen. Gaussian moments for noisy independent component analysis [J]. IEEE SP Lett, 1999,6(6) : 145 - 147.
  • 6S Amari. Information geometry of the EM and EM algorithms for neural networks [J]. Neural Networks, 1995,8(9) : 1379 - 1408.
  • 7Harry L Van Trees. Detection,Estimation, and Modulation Theory,PartI [M] .New York:John Wiley & Sons,Inc, 1968.
  • 8L Xu, M Jordan. On convergence properties of the EM algorithm for gaussian mixtures [J]. Neural Computation, 1996,8:129- 151.

同被引文献25

  • 1王元全,汤敏,王平安,夏德深.基于先验知识改进Snake模型的脸部特征分割[J].计算机辅助设计与图形学学报,2004,16(5):687-690. 被引量:2
  • 2王源,陈亚军.基于高斯混合模型的EM学习算法[J].山西师范大学学报(自然科学版),2005,19(1):46-49. 被引量:18
  • 3Cohen L D. On active contour models and Balloons [J].CVGIP: Image Understanding, 1991, 53(2): 211~218.
  • 4Xu C, Prince J L. Snakes, shapes, and gradient vector flow[J]. IEEE Transactions on Image Processing, 1998, 7 (3):359~369.
  • 5Mcinerney T, Terzopoulos D. Topology adaptive deformable surfaces for medical image volume segmentation [J]. IEEE Transactions on Medical Image, 1999, 18(10): 840~ 850.
  • 6Osher S, Sethian J A. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formulation [J]. Journal of Computational Physics, 1988, 79(1): 12~49.
  • 7Adalsteinsson D, Sethian J A. A fast level set method for propagation interfaces [J]. Journal of Computational Physics,1995, 118(2): 269~277.
  • 8Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods [J]. Journal of Computational Physics, 1999, 148(1): 2~22.
  • 9Gomes J, Faugeras O. Reconciling distance functions and level sets [J]. Journal of Visional Communication and Image Representation, 2000, 11(2): 209~233.
  • 10Titterington D M, Smith A F M, Markov U E. Statistical Analysis of Finite Mixture Distributions [M]. New York:Wiley & Sons, 1985.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部