期刊文献+

基于混沌、分形理论的多径衰落分析 被引量:4

Analysis of Multipath Fading Channels Using Chaos and Fractal Theories
下载PDF
导出
摘要 本文首次将混沌、分形等非线性理论引入多径衰落的研究 ,针对现场实测数据分析了它的非线性动力特征 .首先通过重构状态空间和关联维数验证了其动力机制的有限维自由度 ,然后通过计算其Lyapunov指数考察了系统的时空演化特性 ,最后利用分形机制对多径信号进行了重构 .研究结果表明 ,与传统的随机模型相比 。 This paper applies chaos and fractal theories to the analysis of mulitpath fading in mobile radio communications for the first time, and investigates its nonlinear dynamical system characteristics based on the measured data from field trials. By reconstructing the status space and correlation dimension, we show that the dynamical system of the multipath fading channels has finite degree of freedom and a positive maximum Lyapunov exponent. The chaotic characteristic of the multipath fading is demonstrated and the nonlinear evolution mechanism is observed. Finally, we apply fractal model to the interpolation of multipath signals, yielding reasonably accurate replications. The results indicate that the nonlinear dynamical system could be a more suitable model than the conventional random process for describing multipath fading phenomenon.
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第7期1039-1042,共4页 Acta Electronica Sinica
基金 国家自然科学基金 (No 60 0 72 0 4 0 ) 国家 863计划资助项目 (No 2 0 0 1AA1 2 30 4 1 )
关键词 多径衰落 混沌 分形 非线性动力系统 分形内插 Chaos theory Degrees of freedom (mechanics) Dynamics Fractals Interpolation Lyapunov methods Mathematical models Multipath propagation Optimization
  • 相关文献

参考文献10

  • 1王显德,罗贤云,陈菊花,张忠治,傅君眉.基于倾斜地面上分形树的电磁散射研究[J].电子学报,1999,27(9):48-51. 被引量:11
  • 2杨绍清,章新华,赵长安.一种最大李雅普诺夫指数估计的稳健算法[J].物理学报,2000,49(4):636-640. 被引量:59
  • 3S Haykin,X B Li.Detection of signals in chaos[J].IEEE Proceedings,1995,83(1):95—122.
  • 4T Lo,H Leung,J Litva,S Haykin.Fractal characterization of sea-scattered signals and detection of sea-surface targets[J].IEE Proceedings-F,1993,140(4):243—250.
  • 5D L Jaggard,X Sun.Scattering from fractally corrugated surfaces[J].Optical Society of America Journal(A):Optics and Image Sciences,1990,7(6):1131—1139.
  • 6F Takens. Detecting strange attractor in turbulence [J]. Lecture Notes in Mathematics, 1981,898:366 - 381.
  • 7P Grassberger, I Procaccia. Measuring the strangeness of strange attractor [J]. Physica D, 1983,9:189 - 208.
  • 8B B Mandelbrot. A fast fractional gaussian noise generator [ J ]. Water Resources Research, 1971,7:543 - 553.
  • 9M Eecours, I Y Chouinard, G Y Delisle, J Roy. Statistical modeling of the received signal envelope in a mobile radio channel [J]. IEEE Trans Vehicular Technology, 1988,37(4) :204 - 212.
  • 10J B Andersen, T S Rappaport, S Yoshida. Propagation measurements and models for wireless communications channels [ J ]. IEEE Communications Magazine, 1995,33 ( 1 ) : 42 - 49.

二级参考文献4

共引文献68

同被引文献43

  • 1王妍,徐伟.基于时间序列的相空间重构算法及验证(二)[J].山东大学学报(工学版),2005,35(6):89-94. 被引量:8
  • 2王振朝,张俊林,师洁.低压PLC信道特性研究与新型调制解调算法探讨[J].电测与仪表,2006,43(6):5-8. 被引量:12
  • 3Haykin S,Li X B.Detection of Signals in Chaos[J].IEEE Porceedings,1995,83(1):95-122.
  • 4Jaggard D J,Sun X.Scattering from Fractally Corrugated Surfaces[J].Optical Society of America Journal,1990,7(6):1 131-1 139.
  • 5Tannous C,Davies R,Angus A.Strange Attractors in Multipath Propagation[J].IEEE Trans on Comm,1991,39(5):629-631.
  • 6Eyceoz T,Duel-Hallen A,Hallen H.Prediction of Fast Fading Parameters by Resolving the Interference pattern[A].Proceedings of the 31st ASILOMAR Conference on Signals,Systems,and Computers[C].Pacific Grove:IEEE,1997.167-171.
  • 7Ekman T,Kubin C.Nonlinear Prediction of Mobile Radio Channels:Measurement and MARS Model Designs[A].Proc Int Conf Acoust Speech Sign Process[C].Phoenix:IEEE,1999.2 667-2 670.
  • 8Takens F.Detecting Strange Attractors in Fluid Turbulence[M].Berlin:Springer-Verlag,1981.
  • 9Jakes W C.Microwave Mobile Communications[M].Piscataway:IEEE Press,1974.
  • 10Kurek J E,Zaremba M B.Iterative Learning Control Synthesis Based on 2D System Theory[J].IEEE Automatic Control,1993,38(1):121-125.

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部