期刊文献+

用边界元方法和复合形法求解三维结构的下限安定载荷 被引量:3

COMPUTATION OF LOWER BOUND SHAKEDOWN LOADS OF 3-D STRUCTURES BY BEM AND THE COMPLEX METHOD
下载PDF
导出
摘要 基于安定分析的静力定理,建立了用常规边界元方法进行三维理想弹塑性结构安定分析的整套求解算法。下限安定分析所需的弹性应力场直接由边界元方法求出,所需的自平衡应力场由一组带有待定系数的自平衡应力场基矢量的线性组合进行模拟,这些自平衡应力场基矢量通过边界元弹塑性迭代计算获取。安定分析问题最终被归结为一系列未知变量较少的非线性数学规划子问题并通过复合形法直接求解。计算结果表明了算法的有效性。 Based on the lower bound theorem of shakedown analysis, a solution procedure for shakedown analysis of three-dimensional elastoplastic structures has been established using conventional boundary element method (BEM). The elastic stress field for lower bound shakedown analysis is computed directly by 3-D BEM. The self-equilibrium stress field is constructed by the linear combination of several self-equilibrium basis vectors which can be computed by elastic-plastic incremental iteration of 3-D BEM analysis. The lower bound shakedown analysis problem is finally reduced to a series of nonlinear programming sub-problems with relatively few optimal variables. The complex method is used to solve effectively the nonlinear programming sub-problems. Numerical results show the effectiveness of the present solution algorithm.
出处 《工程力学》 EI CSCD 北大核心 2003年第3期13-18,25,共7页 Engineering Mechanics
基金 国家自然科学基金(19902007) 清华大学基础研究基金 全国优秀博士论文专项基金(200025)
关键词 边界元法 安定分析 自平衡应力场 非线性规划 复合形法 Boundary element method Nonlinear programming Stresses Structures (built objects) Three dimensional
  • 相关文献

参考文献11

  • 1岑章志 王勖成 杜庆华.采用有限元-边界元耦合方法计算弹塑性应力[J].北京:清华大学学报,1988,28(2):34-43.
  • 2G Maier, C Polizzotto. A boundary element approach to limit analysis [A]. In: Brebbia C A, Futagami T, Tanaka M Eds. Boundary Elements [C]. Berlin: Springer-Verlag,1983.551-556.
  • 3T Panzeca, Shakedown and Limit. Analysis by the boundary integral equation method[J]. Eur. J. Mech.,A/Solids, 1992, 11(5): 685-699.
  • 4J L Swedlow, T A Cruse. Formulation of boundary integral equations for three dimensional elastoplastic flow [J]. Int J Solids Struct, 1971, 7(12): 1673-1683.
  • 5G Maier, G Novati. Elastic-plastic boundary element analysis as a linear complementarity problem [J]. Appl Math Modelling, 1983, 7: 74-82.
  • 6J B Martin. Plasticity: foundation and general results [M].Cambridge, Mass: MIT Press, 1975.
  • 7A Sawczuk. Shakedown analysis of elastic-plastic structures [J]. Nuclear Engineering and Design, 1974, 28:121-136.
  • 8Zhang Xiaofeng Liu Yinghua Cen Zhangzhi (Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China).A SOLUTION PROCEDURE FOR LOWER BOUND LIMIT AND SHAKEDOWN ANALYSIS BY SGBEM[J].Acta Mechanica Solida Sinica,2001,14(2):118-129. 被引量:2
  • 9E Stein, G Zhang. Shakedown with nonlinear strain-hardening including structural computation using finite element method [J]. Int. J. of Plasticity 1992, 8: 1-31.
  • 10Johannes Grob-Weege. On the numerical assessment of the safety factor of elastic-plastic structures under variable loading [J]. Int. J. Mech. Sci., 1997, 39(4): 417-433.

二级参考文献12

  • 1V. Carvelli,Z. Z. Cen,Y. Liu,G. Maier.Shakedown analysis of defective pressure vessels by a kinematic approach[J].Archive of Applied Mechanics (-).1999(9-10)
  • 2Sergio Sirtori.General stress analysis method by means of integral equations and boundary elements[J].Meccanica.1979(4)
  • 3Xi,S.L,Zhao,F.Z.Computational Methods of Optimization[]..1983
  • 4Maier,G,Polizzotto,C.A boundary element approach to limit analysis[].th IntConference on Boundary Elements.1983
  • 5Maier,G,Pulizzotto,C.On shakedown analysis by boundary elements[].Verba VolantScripta Manent (CMassonet Anniversary Vulume).1984
  • 6Maier,G,Nappi,A,Novati,G.Boundary element analysis in plasticity and mathematical programming[].Proceedings of the IntConfon Boundary Elements.1986
  • 7Teixeira de Freitas,J.A.A kinematic model for plastic limit analysis of solids by the boundary integral method[].CompMethApplMechEngng.1991
  • 8Panzeca,T,Salerno,M,Terravecchia,S.Shakedown analysis by BEM[].European Congress on Computational Methods in Applied Sciences and Engineering.2000
  • 9Martin,J.B.Plasticity:Foundation and General Results[]..1975
  • 10ZIENKIEWICZ O C.The finite element method[]..1977

共引文献2

同被引文献44

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部