期刊文献+

不确定信息静态博弈 被引量:2

Static Game Model of Incomplete Information
下载PDF
导出
摘要 传统的博弈理论中假定局中人具有共同知识 由于现实中各局中人获取信息的途径不同,信息具有不确定性,局中人具有共同知识这一假定往往不能满足 因此,需要讨论不确定信息博弈问题 基于认识效用决策理论,讨论了不确定信息静态博弈问题 假定各局中人仅知道其它局中人类型的分布,并利用拟Bayes理论建立了不确定信息静态博弈模型。 The traditional game theory is based on the assumption that all the players have full knowledge. This assumption, however, can not be usually met in practice because of the incompletion of information and the difference between ways used by the players to acquire information. As a result, the static game with incomplete infromation should be discussed. According to the epistemic utility theory, the static game with incomplete information is discussed. Based on the hypothesis that each player only knows the set of the distribution of other players' type, a static game model of incomplete information is set up by applying the quasiBayesian theory.
作者 韩凌 赵联文
出处 《西南交通大学学报》 EI CSCD 北大核心 2003年第3期359-362,共4页 Journal of Southwest Jiaotong University
关键词 博弈论 会计理论 不确定信息 静态博弈 拟Bayes决策 认知效用 game theory decision uncertainty
  • 相关文献

参考文献10

  • 1张亚东 张盛开.对策论与决策方法[M].沈阳:东北财经学院出版社,2000.114-130.
  • 2Sunder S. Theory of accounting and control [ M ]. Cincinnati: Thomson, 1997 : 10-60.
  • 3Harsanyi J. Games with incomplete information played by Bayesian players I [ J ]. Management Science, 1967; 14: 159-182.
  • 4Harsanyi J. Games with incomplete information played by Bayesian players II [J]. Management Science, 1967; 14: 320-334.
  • 5Harsanyi J. Games with incomplete information played by Bayesian players HI [M]. Management Science, 1967; 14: 486-502.
  • 6Giron F J, Rios S. Quasi-Bayesian behavior: a more realistic to decision making [M]. Valencia: University Express, 1980:17-38.
  • 7Stirling W, MorreU D. Convex hayes decision theory[M]. IEEE Trans. Syst. Man. Cybern, 1991 ; 21 : 10-60.
  • 8Breese J S, Fertig K W. Decision making with interval influence diagrams[J]. Uncertainty in Artificial Intelligence, 1991 ;6: 467-478.
  • 9Sharer G. Probabilities judgement in artificial intelligent and expert systems [J]. Statistics Science, 1987; 2 (1) : 3-44.
  • 10Wally P. Statistical reasoning with imprecise probabilities [M]. New York: Chapman and Hall, 1991: 5-60.

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部