期刊文献+

一个生理模型的Hopf分支的数值逼近 被引量:1

HOPF BIFURCATION IN NUMERICAL APPROXIMATION FOR A PHYSIOLOGICAL MODEL WITH DELAY
下载PDF
导出
摘要 本文研究了欧拉方法对一类简化的生理模型的数值逼近问题 .首先 ,将时滞差分方程表示为映射 .然后以时滞 τ为分支参数 ,利用离散动力系统的分支理论 ,在该模型具有 Hopf分支的条件下 ,给出了差分方程 Hopf分支存在的条件 .证明了当该模型在 τ=τ0 产生 Hopf分支时 ,其数值解也在相应的参数值 τh 处具有 Hopf分支 ,并且 τh=τ0 + O( h) . In this paper, the numerical approximation of a physological model with delay is considered. First, the delay deference equation is written as a map, employing the theories of bifurcation for discrete dynamical systems, the conditions to guarantee the existence of Hopf bifurcations for numerical approximation are given. The relations of Hopf bifurcation between the continuous and the discrete are discussed. We prove that when the continuous model has Hopf bifurcations at τ=τ 0, the numerical approximation also has Hopf bifurcations at τ h=τ 0+O(h).
机构地区 哈尔滨工业大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2003年第2期4-6,共3页 Natural Science Journal of Harbin Normal University
关键词 生理模型 HOPF分支 数值逼近 欧拉方法 离散动力系统 时滞差分方程 Physiological model Hopf bifurcation Numerical approximation Euler method
  • 相关文献

参考文献8

  • 1魏俊杰,李秀玲.一类具时滞的生理模型的Hopf分支[J].应用数学学报,2000,23(2):172-180. 被引量:5
  • 2J.K. Hale and S.M. Verdyn Lunel. Introduction to Func-tional Differential Equations. Spring-Verlag, New- York,1993.
  • 3J. Guckenheimer and P.J. Holmes. Nolinear oscillations,dynamical systems, and bifurcations of vector fields.Springer-Verlag, 1983.
  • 4S. Winggins. Introduction to applied nonlinear dynamical systems and chaos. Springer-Verlag, 1990.
  • 5Neville J. Ford and Volker Wulf. The use of boundary locus plots in the identification of bifurcation point in numerical approximation of delay differential equations. JCAM,1999,111,153-16.
  • 6T. Koto. Naimark-Sacker bifurcations in the Euler method for a delay differential equation. BIT, 2000,115,601 - 616.
  • 7Volker Wulf and Neville J. Ford. Numerical Hopf bifurcation for a class of delay equations. JCAM. 1999,111,153-162.
  • 8Neville J. Ford and Volker Wulf. Numerical Hopf bifurcation for the delay logistic equation. Technical Reprot 323, Manchester Centre for Computational Mathematics, 1998.

二级参考文献3

  • 1裘宗燕.Mathematica数学软件系统的应用及其程序设计[M].北京:北京大学出版社,1996..
  • 2裘宗燕,Mathematica数学软件系统的应用及其程序设计,1996年
  • 3Kazarinoff N,J Inst Math Appl,1978年,21卷,461页

共引文献4

同被引文献5

  • 1Neville J,Volker W.Numerical Hopf Bifurcation for the Delay Logistic Equation[J].Technical Report 323,Manchester Center for Computational Mathematics,1998.
  • 2Hale J K,Verdyn S M.Introduction to Functional Differential Equations[M].New York:Springer Verlag,1993.
  • 3Hassard B,Kazarinoff N,Wan Y H.Theory and Applications of Hopf Bifurcation[M].Cambridge:Cambridge Univ Press,1981.
  • 4Volker W,Neville J.Numerical Hopf Bifurcation for a Class of Delay Equation[J].JCAM,1999,111:153-162.
  • 5王玲书,徐瑞,冯光辉.一类具有时滞和Holling Ⅲ型功能性反应的捕食模型的稳定性和Hopf分支[J].数学的实践与认识,2008,38(24):173-179. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部