期刊文献+

地球流体中的完全惯性振荡和惯性波动

Complete inertial oscillation and waves in globosity fluid
下载PDF
导出
摘要 在通常描写地球流体运动的Navier Stokes方程组中考虑了另一个Coriolis参数f′=2Ωcosφ的情况下,首先对中高纬度和低纬度的地球流体中的惯性振荡分别进行了分析和讨论,并把该惯性振荡称为完全惯性振荡,其次对中高纬度的完全惯性波也进行了讨论,结果发现:(1)中高纬度的完全惯性振荡的周期要比不考虑f′的惯性振荡(即通常所说的惯性圆)周期小,完全惯性振荡轨迹为一惯性球,球半径与初始纬向速度成正比;(2)低纬度的完全惯性振荡周期通常远大于中高纬度的完全惯性振荡周期,而且在一定的条件下,周期可以非常大,所以低纬度的完全惯性运动是长周期(或低频)的惯性振荡。(3)中高纬度的完全惯性波的传播速度比不考虑f′的惯性波快,而且是频散波。 The coriolis parameter f′=2Ωcosφ is considered and the inertial oscillation called the complete inertial oscillation in the middle and low latitudes and the inertial waves in the middle latitude is analyzed. The results show that (1) In the middle latitudes the period of the complete inertial oscillation is less than that of the inertial oscillation in which the parameter f′ is omitted and the trace of the complete inertial oscillation is an inertial sphere whose radius is proportional to the initial zonal velocity. (2) There are two kinds of angular frequencies of the complete inertial oscillation in the low latitudes, the one is ω and the other is ω1. They are all decided by the initial zonal velocity. (3) The complete inertial wave in the middle latitudes spreads more quickly than the inertial wave in which the parameter f′ is omitted.
出处 《成都信息工程学院学报》 2003年第2期161-170,共10页 Journal of Chengdu University of Information Technology
关键词 地球流体 完全惯性振荡 完全惯性波动 NAVIER-STOKES方程组 振荡轨迹 惯性球 振荡周期 coriolis parameter inertial sphere complete inertial oscillation complete inertial wave
  • 相关文献

参考文献11

  • 1正野重方.动力气象学[M].北京:科学出版社,1960..
  • 2刘式适 刘式达.特殊函数[M].北京:气象出版社,1986..
  • 3刘式适 刘式达.大气动力学[M].北京:北京大学出版社,1991..
  • 4刘式适 刘式达.特殊函数[M].北京:气象出版社,1986..
  • 5正野重方.动力气象学[M].北京:科学出版社,1960..
  • 6T. H. Chen, R.A.D. Byron-Scott. Bifurcation in Cross-Equatorial Airflow: A Nonlinear Characteristic of Lagrangian Modeling[J]. Journal of The Atmospheric Sciences, 1995,52(9) : 1.
  • 7Liu Shikuo, Zeng Subing. A Simple Nolinear Modle of Inertial Oscillation of Atmosphere In Low-Latitudes[ J ]. ACTA Meteorologica Sinica, 1989,3(4) : 543 -- 546.
  • 8Liu Shida, Liu Shikuo. A Model of Bifurcation and Catastrophe of The Convection in Atmosphere[J]. Acta Mechanica Sinica, 1984,16:10 - 18.
  • 9Toda,M, Watanabe,s. Nonlinear Mechanics[M]. Domodadi, 1983 : 183.
  • 10Abramowitz, M, Stegun, I A. Handbook of Mathematical Functions with Formulas [ M ]. Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics, Series 55, Washington, D. C., 1964:1045.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部