期刊文献+

时序数据库中快速相似搜索的算法研究 被引量:5

RESEARCH ON FAST RETRIEVAL OF SIMILARITY PATTERNS IN A TIME SERIES DATABASE
原文传递
导出
摘要 针对时间序列,本文提出了一种新的数据表示方法。该方法通过将时间序列分成若干段,并从每个分段中提取一个特征向量,从而用一个特征向量集作为该时间序列的逻辑表示。在此基础上,采用时间弯曲距离作为相似模型,提出了一种改进的KMP算法作为检索方法。此算法能够快速挖掘出时序数据库中与给定查询序列相似的所有(子)序列。该算法具有较高的效率。 In this paper, a new data representation for time series is presented, which can support similarity search very efficiently in a time series database. First, each sequence is divided into several segments. Second, a feature vector is extracted from each segment and let a set of such feature vectors as a logical representation of a sequence. Finally, the time warping distance is used as similarity model and introduce a modified KMP algorithm to retrieve all the sequences or subsequences that are similar to the query sequence given by users. The experimental results prove that this approach is efficient and practical.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2003年第2期169-173,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.69835010)
关键词 时序数据库 快速相似搜索算法 数据表示 数据模型 Time-Series, Feature Vector, Time-Warping Distance, Similarity Search
  • 相关文献

参考文献7

  • 1Agrawal R,Faloutsos C,Swami A.Efficient Similarity Scarch in Sequences Database[].Proc of the th International Conference on Foundations of Data Organization and Algorithms.1993
  • 2Bozkaya T,Yazdani N,Ozsoyglu M.Matching and Indexing Sequences of Different Lengths[].Proc of the th International Conference on Information and Knowledge Management.1997
  • 3Rabinar L,Juang B H.Fundamentals of Speech Recognition[].Prentice Hall Signal Processing Series.1993
  • 4R. Agrawal,,K. I. Lin,H. S. Sawhney,,and K. Shim.Fast similarity search in the presence of noise, scaling, and translation in time-series database[].Proc Int Conf Very Large Data Bases(VLDB‘).1995
  • 5Faloutsos C,Ranganathan M,Manolopoulos Y.Fast subsequencematching in time-series databases[].Proceedings of the ACMSIGMOD International Conference on Management of Data.1994
  • 6E.Keogh,P.Smyth.A Probabilistic Approach to Fast Pat- tern Matching in Time Series Databases[].Proceedings of the rd International Conference on Knowledge Discovery and Data Mining.1997
  • 7Keogh E,Pazzani M.An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback.In: Proc of 4th Int’ l Conf on Knowledge Discovery and Data Mining(KDD’ 98)[].New York.1998

同被引文献28

  • 1李秋丹,迟忠先,孙瑞超.一种时间序列相似匹配新算法[J].控制与决策,2004,19(8):915-919. 被引量:4
  • 2李爱国,覃征.大规模时间序列数据库降维及相似搜索[J].计算机学报,2005,28(9):1467-1475. 被引量:20
  • 3龚薇,肖辉,曾海泉.基于变化点的时间序列近似表示[J].计算机工程与应用,2006,42(10):169-171. 被引量:6
  • 4郭四稳,何维,王鹏.基于小波技术的网络时序数据挖掘[J].计算机工程,2007,33(2):40-43. 被引量:3
  • 5Agrawal R,Faloutsos C,Swami AN. Efficient Similarity Search in Sequence Databases. 4th Proc. on Foundations of Data Organization and Algorithms (FODO), 1993: 69-84.
  • 6Faloutsos C,Ranganathan M,Manolopoulos Y.Fast Subsequence Matching in Time-Series Databases. Proc. of the 1994 ACM SIGMOD Int. Conf. on Management of Data,1994: 419-429.
  • 7Rafiei D,Mendelzon A.On Similarity-Based Queries for Time Series Data. SIGMOD Record, 1997, 26(2): 13-25.
  • 8Chan K,Fu A.W.Efficient Time Series Matching by Wavelets.Proc. 15th Int. Conf. on Data Engineering (ICDE), 1999, 4(2): 126-133.
  • 9Yi B,Faloutsos C.Fast Time Sequence Indexing for Arbitrary Lp Norms.The VLDB Journal, 2000, 5(3): 385-594.
  • 10Keogh E.J,Chakrabarti K,Pazzani M.J.,Mehrotra S.Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Journal of Knowledge and Information Systems, 2001, 3(3): 263-286.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部