期刊文献+

支持向量机回归理论与控制的综述 被引量:56

REVIEW OF SUPPORT VECTOR MACHINES REGRESSION THEORY AND CONTROL
原文传递
导出
摘要 支持向量机回归理论与神经网络等非线性回归理论相比具有许多独特的优点。SVMR有线性回归和非线性回归,其模型的选择包括核的选择、容量控制以及损失函数的选择。SVMR在控制方面的研究包括非线性时间序列的预测及应用、系统辨识以及优化控制和学习控制等方面的研究。将SVMR应用于控制方法的研究,是智能控制的一个崭新的研究方向,具有广阔的应用前景。 The support vector machines regression shows excellent performanc by comparison with other non-linear regression, such as neural networks. SVMR includedes linear SVMR and nonlinear SVMR. The way of SVMR model selection includes kernel selection, capacity selection and loss function selection. The research of SVMR control is currently perdiction of nonlinear time series and its application, system identification, optimal control and learning control. The research of control method using SVMR is a new research field of intelligent control, and will widely be applied in engineering.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2003年第2期192-197,共6页 Pattern Recognition and Artificial Intelligence
关键词 神经网络 支持向量机 回归理论 学习控制 学习理论 Support Vector Machines Regression, Modeling, Control
  • 相关文献

参考文献38

  • 1张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2279
  • 2王定成,方廷健,高理富,马永军.支持向量机回归在线建模及应用[J].控制与决策,2003,18(1):89-91. 被引量:82
  • 3Vapnik V N. The Nature of Statistical Learning Theory. Springer,N Y, 1999.
  • 4Boser B E, Guyon I M, Vapnik V N. A Training Algorithm for Optimal Margin Classifiers . In: Haussler D, ed. Proc of the 5th Annual ACM Workshop on Learning Theory, Pittsburgh, ACM Press, 1992, 144-152.
  • 5Muller K R, Smola A J, et al. Predicting Time Series with Support Vector Machines. In: Gerstner W, Germond A, et al, eds. Proc of the International Conference on Artificial Neural Networks,Lausaunne, Switzerland, Springer, 1997, 999-1004.
  • 6Mukherjee S, Osuna E, Girosi F. Nonlinear Prediction of Chaotic Time Series Using a Support Vector Machine. In: Principe J, Gile L, Morgan N, Wilson E, eds. Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Worshop, New York,1997, 511-520.
  • 7Drucker H, Burges C J C, Kaufman L, Smola A, Vapnik V N.Support Vector Regression Machines. In: Mozer M, Jordan M,Petsche T, eds. Advances in Neural Information Processing Systerns, 9, Cambridge, MA, MIT Press, 1997, 155- 161.
  • 8Vapnik V N, Golowich S, Smola A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. In: Mozer M, Jordan M, Petsche T, eds. Advances in Neural Information Processing Systems, 9, Cambridge, MA, MIT Press, 1997, 281-287.
  • 9Platt J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In: Sch6kopf B, Burges C J C, Srnola A J,eds. Advances in Kernel Methods - Supprot Vector Learning, Cambridge, MA, MIT Press, 1999, 185-208.
  • 10Hevade S K, Keerthi S S, Bhattacharyya C, et al. Improvements to the SMO Algorithm for SVM Regression. IEEE Trans on Neural Networks, 2000, 11(5): 1188-1193.

二级参考文献9

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer,1999.
  • 2[2]Müller K R, Smola A J, Rats¨ch G, et al. Predicting timeserieswithsupport vector machines[A]. Proc ICANN′97[C]. New York: Springer,1997.999-1004.
  • 3[3]Drucker H, Burges C J, Kaufman L, et al. Support vector regression machines[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.155-161.
  • 4[4]Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing[A]. Adv Neural Infor Proc Syst[C].Cambride: MIT Press,1997.281-287.
  • 5[5]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. 5th Annual ACM Workshop COLT[C]. Pittsburgh: ACM Press,1992.144-152.
  • 6[6]Campbell C. Algorithmic approaches to training support vector machnies: A survey[A]. Proc ESANN′2000[C]. Belgium: D-Facto Publications,2000.27-36.
  • 7[7]Marsh L S, Albright L D. Economically optimum day temperature for greenhouse hydroponic lettuce production - Part 2: Results and simulations[J]. Trans ASAE,1991,34(3):557-562.
  • 8[8]Maksarov D, Chalabi Z S. Computing bounds on greenhouseenergyrequirementsusingboundederror approach[J]. Contr Eng Prac,1998,(6):947-995.
  • 9卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41

共引文献2339

同被引文献593

引证文献56

二级引证文献480

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部