期刊文献+

QUENCHING ON BOUNDARY TO THE NEWTON FILTRATION EQUATION(Ⅰ)

下载PDF
导出
摘要 This paper discusses the global existence and quenching of the solution to the Newton filtration equation with the nonlinear boundary condition. The authors also discuss the profile of the quenching solution in the quenching time and obtain the quenching rate of the quenching solution. This paper discusses the global existence and quenching of the solution to the Newton filtration equation with the nonlinear boundary condition. The authors also discuss the profile of the quenching solution in the quenching time and obtain the quenching rate of the quenching solution.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2003年第3期361-368,共8页 数学物理学报(B辑英文版)
基金 Tianyuan (Youth Science Foundation of China.
关键词 Newton filtration equation quenching solution global solution Newton filtration equation quenching solution global solution
  • 相关文献

参考文献15

  • 1Levine H A. The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions. SIAM J Math Anal, 1983, 4:1139-1152.
  • 2Fila M, Levine H A. Quenching on the boundary. Nonlinear Anal TMA, 1993, 21(10): 795-802.
  • 3Amann H. Quasilinear parbolic systems under nonlinear boundary conditions. Arch Rational Mech Anal,1986,92(2): 153-192.
  • 4Zhou L, Duan Z W. Global and blow-up solution for quasilinear degenerate parabolic equation with nonlinear boundary conditions. Comm in Appl Anal, (in press).
  • 5Angenent S. The zeroset of a solution of a parabolic equation. J Reine Angew Math, 1988,390:79-96.
  • 6Ladyzenskaja O A, Solonnikov V A, Ural'ceva N N. Linear and quasilinear equations of parabolic type.Tranasl Math Monogr, Vol 23, Amer Math Soc, providence,1968.
  • 7Deng K. Quenching for solutions of a plasma type equation. Nonlinear Anal TMA, 1992,18(8): 731-742.
  • 8Kwak M. A porous media equation with absorption. I.Long time behavior. J Math Anal Appl, 1998,223(1): 96-110.
  • 9Kwak M. A porous media equation with absorption II: Uniqueness of the very singular solution. J Math Anal Appl, 1998, 223(1): 111-125.
  • 10Galaktionov V A. On asymptotic self-similar behaviour for a quasilinear heat equation: single point blowup. SIAM J Math Anal, 1995, 26(3): 675-693.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部