期刊文献+

ASYMPTOTIC NORMALITY OF KERNEL ESTIMATES OF A DENSITY FUNCTION UNDER ASSOCIATION DEPENDENCE

ASYMPTOTIC NORMALITY OF KERNEL ESTIMATES OF A DENSITY FUNCTION UNDER ASSOCIATION DEPENDENCE
下载PDF
导出
摘要 Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a kernel estimate of f(.) under certain regular conditions. Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a kernel estimate of f(.) under certain regular conditions.
作者 林正炎
出处 《Acta Mathematica Scientia》 SCIE CSCD 2003年第3期345-350,共6页 数学物理学报(B辑英文版)
基金 NSFC(10131040),SRFDP (2002335090)and KRF(D00008)
关键词 Associated random variables negatively associated random variables kernel estimate of a density function central limit theorem Associated random variables negatively associated random variables kernel estimate of a density function central limit theorem
  • 相关文献

参考文献11

  • 1Cai Z, Rouesas G. Uniform strong estimation under α-mixing with rates. Statist Probab Lett, 1992, 15:47-55.
  • 2Esary J, Proschan F, Walkup D. Association of random variables with applications. Ann Math Statist,1967, 38:1466-1474.
  • 3Joag-Dev K, Proschan F. Negative association of random variables with applications. Ann Statist, 1983,11:286-295.
  • 4Lehmann E L. Some concerts of devendence. Ann Math Statist. 1966. 37:1137-1153.
  • 5Lin Z Y. On the kernel estimation of a density for dependent sample. Science Bull, 1983, 28:709-713.
  • 6Nadaraja E. On non-parameter estimates of density functions and regression curves. Theory Probab Appl,1965, 10:186-190.
  • 7Newman C M. Normal fluctuations and the FKG inequalities. Comm Math Phys, 1980, 74:119-128.
  • 8Newman C M. A general central limit theorem for FKG systems. Comm Math Phys, 1983, 91:75-80.
  • 9Parzen E. On estimation of a probability density function and mode. Ann Math Statist, 1962, 33: 1065-1076.
  • 10Roussas G. Nonpararnetric estimation in Markov processes. Ann Inst Math Statist, 1969, 21:73-87.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部