期刊文献+

估计小波系数方差邻域大小的研究 被引量:4

Research on size of neighborhood to estimate the variance of wavelet coefficient
下载PDF
导出
摘要 利用小波变换去噪时小波系数方差的估计对去噪结果影响很大。自然图像小波分解后得到的系数在不同的分辨率中差异很大,所以利用邻域估计中心点方差时,不同分辨率应有不同大小的邻域。首先对在邻域中利用极大似然准则估计中心点方差进行分析,再结合自然图像小波分解后的系数在不同分辨率子带中,根据平稳性和重要性选择邻域的大小。最后进行去噪实验,并取得正交小波分解下理想的去噪性能。 When the wavelet decomposition is used to denoise corrupted natural picture, the precision of variance estimation of wavelet coefficient has great influence on the denoising effect. Because the wavelet coefficients in different scales have quite different features, it is necessary to choose different window sizes in different scales to estimate the variance of coefficient in the window center. The outcome of variance estimation by maximal likelihood criterion is firstly analyzed. Then the variation and power of wavelet coefficient are also considered to determine the proper size of window in different scales. At last several simulations are performed to test the above analysis. The excellent simulated result shows the power of choosing proper window size in the specific scale.
出处 《红外与激光工程》 EI CSCD 北大核心 2003年第4期407-411,共5页 Infrared and Laser Engineering
关键词 小波变换 图像去噪 系数收缩 多分辨率分析 Wavelet transform Image denoising Coefficient shrinkage Multi-resolution analysis
  • 相关文献

参考文献6

  • 1Mihcak M K, Kozintsev I, Ramchandran K. Low-complexity image denoising based on statistical modeling of wavelet coefficients[J]. IEEE Signal Processing Letters, 1999, 6(12): 300-303.
  • 2Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising[J],IEEE Transactions on Image Processing, 2000, 9 (9):1522-1531.
  • 3Mihcak M K, Kozintsev I, Ramchandran K. Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising[A]. Acoustics, Speech, and Signal Processing, 1999. Proceedings, 1999 IEEE International Conference[C]. 1999,6, 3253-3256,.
  • 4Romberg J K, Choi H, Baraniuk R. Bayesian tree-structured image modeling using wavelet-domain hidden Markov model[A]. in Proc, SPIE[C]. Denver, CO. 1999,3816.31-44.
  • 5Fan Guo-liang, Xia Xiang-gen. Image denoising using a local contextual hidden markov model in the wavelet domain [J].IEEE Signal Processing Letters , 2001, 8(5 ) : 125-128.
  • 6Fan G, Xia Xiang-gen. Wavelet-based statistical image processing using Hidden Markov Tree model[A], in Proc 34th Annu Conf Information Sciences and Systems[C]. Princeton, NJ,2000.

同被引文献38

  • 1崔雪梅,孙才新,李剑,李新,杜林.用复小波提取变压器局放脉冲信号特征的研究[J].仪器仪表学报,2005,26(2):199-201. 被引量:11
  • 2何洪英,姚建刚,王玲.一种基于Bayes估计的小波自适应绝缘子红外图像去噪方法[J].电工技术学报,2006,21(1):37-41. 被引量:17
  • 3何洪英,姚建刚,蒋正龙,李伟伟.利用红外图像特征和径向基概率神经网络识别不同湿度条件下绝缘子的污秽等级[J].中国电机工程学报,2006,26(8):117-123. 被引量:58
  • 4Chang S G,Yu B,Vetterli M.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing,2000,9(9):1532-1546.
  • 5Mallat S G.A wavelet tour of signal processing[M].San Diego,USA:Academic Press,1998.
  • 6Miheak M K.Low-complexity image denoising based on statistical modeling of wavelet coefficients[J].IEEE Signal Processing Letters,1999,6(12):300-303.
  • 7Chang S G,Vetterli M.Spatially adaptive wavelet thresholding with context modeling for image denoising[J].IEEE Transactions on Image Processing,2000,9(9):1522-1531.
  • 8Liu J,Moulin P.Information-theoretic analysis of inter-scale and intrascale dependencies between image wavelet coeficients[J].IEEE Transactions on Image Processing,2001,10(11):1647-1658.
  • 9Simoncelli E P,Adelson E.Noise removal via Bayesian wavelet coring[C]//Proc IEEE Int Conf Image Processing.Lausanne,Swityland:IEEE,1996:279-382.
  • 10Shui P L.Image denoising algorithm via doubly local Wiener filtering with directional windows in wavelet domain[J].IEEE Signal Processing Letters,2005,12(10):681-684.

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部