期刊文献+

关联规则衡量标准的改进模型

Improved Model of Measure Standard in Association Rules
下载PDF
导出
摘要 本文指出关联规则的表达方式及其衡量标准的不足,分析产生的根本原因,并修改了关联规则的形式化定义,提出一个新的衡量标准——信任度(trust)。 This paper points out the problems of the expressions and measure standards in association rules, and also analyzes their occurring reasons. In addition, the formal definition of association rules is revised, while TRUST, a new measure standard, is introduced in this paper.
出处 《广东自动化与信息工程》 2003年第2期26-28,共3页 Guangdong Automation & Information Engineering
基金 广东省重点攻关项目(A10203) 广州市重点攻关项目资助(Z2-D3041)
关键词 数据库 关联规则 数据挖掘 衡量标准 信任度 知识发现 改进模型 Data Mining, Association Rules, Trust
  • 相关文献

参考文献9

  • 1蔡伟杰,张晓辉,朱建秋,朱扬勇.关联规则挖掘综述[J].计算机工程,2001,27(5):31-33. 被引量:134
  • 2罗可,吴杰.怎样获得有效的关联规则[J].小型微型计算机系统,2002,23(6):711-713. 被引量:12
  • 3Fayyad, U.M, Piatetsky-Shairo, G., Smyth, P. ,et al. Advancesin knowledge discovery and date mining. AAA/MIT Press,1996.
  • 4S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic Iternset counting and impficalion rules for market basket data. In ACM SIGMOD International Conference On the Management of Data. 1997.
  • 5J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. Proceedings of ACM SIGMOD International Conference on Management of Data,pages 175-186, San Jose, CA, May 1995.
  • 6R Srikant, and R Agrawal. Mining generalized association roles. Proceedings of the 21sta International Conference on Very Large Database. 1995, 407--419.
  • 7R. Srikant, and R. Agrawal. Mining quantitative association rules in large relational tables. Proceedings of the ACM SIGMOD Conference on Management of Data. 1996, 1-12.
  • 8A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in a large database of costomer transactions. Proceedings of the International Conference on Data Engineering, February 1998.
  • 9C. C. Aggatwal, and P. S. Yu. A new framework for iternset generation. IBM Research Report,RC-21064.

二级参考文献5

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部