期刊文献+

Nonuniversality and Breakdown of Scaling in Aggregation Process with Removal Term

下载PDF
导出
摘要 We study the kinetics of an irreversible aggregation model with removal term. We solve the mean-field rate equation to obtain the general solution of the cluster-mass distribution for the case with arbitrary time-dependent remora/probability P(t). In particular, we analyze the scaling properties of the cluster distribution in the case with P(t)=u(t+t0)^v and find that the cluster-mass distribution always obeys a scaling law. We also investigate the kinetic behavior of another simple system, in which the removal probability of a cluster is proportional to its mass, and the results indicate that for this system the scaring description of the cluster-mass distribution breaks down completely.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第1X期123-126,共4页 理论物理通讯(英文版)
  • 相关文献

参考文献14

  • 1R.L. Drake, Topics of Current Aerosol Research, eds.G.M. Hidy and J.R. Brook, Pergamon, New York (1972).
  • 2S.K. Friedlander, Smoke, Dust and Haze: Fundamental of Aerosol Behavior, Wiley, New York (1977).
  • 3Kinetics of Aggregation and Gelation, eds. F. Family and D.P. Landau, North-Holland, Amsterdam (1984).
  • 4P. Meankin, Rep. Prog. Phys. 55 (1992)157.
  • 5M.H. Ernst, Fundamental Problems in Statistical Physics VI, ed. by E.G.D. Cohen, Elsevier, New York (1985).
  • 6T. Vicsek and F. FAmily, Phys. Rev. Lett. 52 (1984) 1669;P. Meakin, T. Vicsek, and F. Family, Phys. Rev. B31(1985) 564; F. Family and P. Meakin, Phys. Rev. A40(1989) 3836.
  • 7P.L. Krapivsky and E. Ben-Naim, Phys. Rev. E53 (1996)291; P.L. Krapivsky and S. Redner, ibid. E54 (1996)3553.
  • 8J.G. Crump and J.H. Seinfeld, J. Coll. Int. Sci. 90 (1982)469.
  • 9E.M. Hendriks, J. Phys. A17(1984) 2299.
  • 10Z. Racz, Phys. Rev. A32 (1985) 1129.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部