期刊文献+

Modular Automorphisms of Triangular Matrices over Commutative Rings Preserving Involutory and Tripotent

Modular Automorphisms of Triangular Matrices over Commutative Rings Preserving Involutory and Tripotent
下载PDF
导出
摘要 Suppose R is a commutative ring with 1, and 2 is a unit of R. Let Tn(R) be the n × n upper triangular matrix modular over R, and let (?)i(R) (i=2 or 3) be the set of all R-module automorphisms on Tn(R) that preserve involutory or tripotent. The main result in this paper is that f ∈ (?)i(R) if and only if there exists an invertible matrix U ∈ Tn(R) and orthogonal idempotent elements e1,e2,e3 ande4 in R with such that where Suppose R is a commutative ring with 1, and 2 is a unit of R. Let Tn(R) be the n × n upper triangular matrix modular over R, and let (?)i(R) (i=2 or 3) be the set of all R-module automorphisms on Tn(R) that preserve involutory or tripotent. The main result in this paper is that f ∈ (?)i(R) if and only if there exists an invertible matrix U ∈ Tn(R) and orthogonal idempotent elements e1,e2,e3 ande4 in R with such that where
出处 《Northeastern Mathematical Journal》 CSCD 2003年第2期149-154,共6页 东北数学(英文版)
基金 Foundation item:The NSF(10271021)of China and NSF(10531130)of Heilongjiang Education Committee
关键词 involutory tripotent LOCALIZATION involutory, tripotent, localization
  • 相关文献

参考文献1

二级参考文献4

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部