期刊文献+

On the Nonexistence of Laurent Polynomial First Integrals for General Semi-quasihomogeneous Systems

On the Nonexistence of Laurent Polynomial First Integrals for General Semi-quasihomogeneous Systems
下载PDF
导出
摘要 An autonomous system of ODFs which admitting a quasi-homogeneous group of symmetries is called a quasihomogeneous one.
机构地区 School of Mathematics
出处 《Northeastern Mathematical Journal》 CSCD 2003年第3期193-196,共4页 东北数学(英文版)
基金 The NSF (10126013) of China.
关键词 first integral Kowalevsky matrix Laurent polynomial partial integra-bility semi-quasihomogeneous system first integral, Kowalevsky matrix, Laurent polynomial, partial integra-bility, semi-quasihomogeneous system
  • 相关文献

参考文献1

二级参考文献15

  • 1Ramani, A., Grammaticos, B. and Bountis, T., Tile Painlevé property and singularity analysis of integrable and nonintegrable systems, Phys. Rep., 180(1989), 159-245.
  • 2Giacomini, H.J., Repetto, C.E. and Zandron, O.P., Integrals of motion for three-dimensional non-Hamiltonian dynamical systems, J. Phys. A., 24(1991), 4567-4574.
  • 3Schwarz, F., An algorithm for determining polynomial first integrals of autonomous systems of ordinary differential equations, J. Symbolic Comput., 1(1985), 229-233.
  • 4Schwarz, F., Existence theorems for polynomial first integrals, in Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, Bonn, Germany,edited by S. M. Watt (Acm, New York, 1991).
  • 5Steeb, W. H., A note on Carleman linearization, Phys. Lett. A, 140(1989), 336-338.
  • 6Ziglin, S.L., Branching of solutions and non-existence of first integrals in Hamiltonian mechanics Ⅰ, Ⅱ, Funct. Anal. Appl. 16, 17(1983), 181-189, 6-17.
  • 7Costin, R.D., Integrability properties of nonlinearly perturbed Euler equations, Non-linearity, 10(1997), 905-924.
  • 8Furta, S.D., On non-integrability of general systems of differential equations, Z. Angew.Math. Phys., 47(1996), 112-131.
  • 9Goriely, A., Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations, J. Math. Phys., 37(1996), 1871-1893.
  • 10Moulin-Ollagnier, J., Nowicki, A. and Strelcyn, J. M., On the nonexistence of constants of derivations: the proof of a theorem of Jouanolou and its development, Bull. Sci.Math., 119(1995), 195-223.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部