On the Nonexistence of Laurent Polynomial First Integrals for General Semi-quasihomogeneous Systems
On the Nonexistence of Laurent Polynomial First Integrals for General Semi-quasihomogeneous Systems
摘要
An autonomous system of ODFs which admitting a quasi-homogeneous group of symmetries is called a quasihomogeneous one.
基金
The NSF (10126013) of China.
二级参考文献15
-
1Ramani, A., Grammaticos, B. and Bountis, T., Tile Painlevé property and singularity analysis of integrable and nonintegrable systems, Phys. Rep., 180(1989), 159-245.
-
2Giacomini, H.J., Repetto, C.E. and Zandron, O.P., Integrals of motion for three-dimensional non-Hamiltonian dynamical systems, J. Phys. A., 24(1991), 4567-4574.
-
3Schwarz, F., An algorithm for determining polynomial first integrals of autonomous systems of ordinary differential equations, J. Symbolic Comput., 1(1985), 229-233.
-
4Schwarz, F., Existence theorems for polynomial first integrals, in Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, Bonn, Germany,edited by S. M. Watt (Acm, New York, 1991).
-
5Steeb, W. H., A note on Carleman linearization, Phys. Lett. A, 140(1989), 336-338.
-
6Ziglin, S.L., Branching of solutions and non-existence of first integrals in Hamiltonian mechanics Ⅰ, Ⅱ, Funct. Anal. Appl. 16, 17(1983), 181-189, 6-17.
-
7Costin, R.D., Integrability properties of nonlinearly perturbed Euler equations, Non-linearity, 10(1997), 905-924.
-
8Furta, S.D., On non-integrability of general systems of differential equations, Z. Angew.Math. Phys., 47(1996), 112-131.
-
9Goriely, A., Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations, J. Math. Phys., 37(1996), 1871-1893.
-
10Moulin-Ollagnier, J., Nowicki, A. and Strelcyn, J. M., On the nonexistence of constants of derivations: the proof of a theorem of Jouanolou and its development, Bull. Sci.Math., 119(1995), 195-223.
-
1史少云,韩月才,李伟.On the Nonexistence of Laurent Polynomial First Integrals for General Nonlinear Systems[J].Northeastern Mathematical Journal,2003,19(2):95-98. 被引量:1
-
2周恒,王仁宏.Orthogonal Laurent Polynomials and Their Zeros[J].Journal of Mathematical Research and Exposition,2006,26(1):19-22.
-
3史荣昌,梅凤翔.ON A GENERALIZATION OF BERTRAND’S THEOREM[J].Applied Mathematics and Mechanics(English Edition),1993,14(6):537-544.
-
4焦佳,付苗苗,马勇.周期系统Laurent多项式型首次积分的不存在性[J].吉林大学学报(理学版),2009,47(1):44-47. 被引量:2
-
5汪小琳.p.q-Baer环的Laurent多项式扩张[J].甘肃科学学报,2004,16(1):7-8. 被引量:1
-
6刘东,夏利猛.q-微分算子代数(英文)[J].南华大学学报(理工版),2003,17(2):71-74.
-
7B.Muatjetjeja,C.M.Khalique.EMDEN-FOWLER TYPE SYSTEM:NOETHER SYMMETRIES AND FIRST INTEGRALS[J].Acta Mathematica Scientia,2012,32(5):1959-1966.
-
8张宏彬,陈立群,顾书龙,柳传长.The discrete variational principle and the first integrals of Birkhoff systems*[J].Chinese Physics B,2007,16(3):582-587. 被引量:5
-
9许学军,梅凤翔.First integrals and stability of second-order differential equations[J].Chinese Physics B,2006,15(6):1134-1136.
-
10HAN ChongKyu,PARK JongDo.Method of characteristics and first integrals for systems of quasi-linear partial differential equations of first order[J].Science China Mathematics,2015,58(8):1665-1676. 被引量:1