期刊文献+

p(x)-Laplace方程的强极大值原理 被引量:6

A STRONG MAXIMUM PRINCIPLE FOR p(x)-LAPLACE EQUATIONS
下载PDF
导出
摘要 本文给出了如下形式的p(x)-Laplace方程 -div(|u|^(p(x)-2)u)+d(x)|u|~q(x)-2)u=0,x∈Ω的一个强极大值原理,其中p(x),q(x),d(x)满足一定的条件。 The authors give a strong maximum principle for super-solutions of the p(x)-Laplace equations where p(x), d(x), q(x) satisfy some conditions.
机构地区 兰州大学数学系
出处 《数学年刊(A辑)》 CSCD 北大核心 2003年第4期495-500,共6页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.19971036)
关键词 P(X)-LAPLACE方程 强极大值原理 比较原理 上-下解 p(x)-Laplace equation, Strong maximum principle, Comparison principle, Super-solution, Sub-solution
  • 相关文献

参考文献13

  • 1范先令,赵敦.p(x)-Laplace方程的弱解的局部C^(1,α)正则性[J].甘肃教育学院学报(自然科学版),2001,15(2):1-5. 被引量:3
  • 2Zhikov, V. V., Averaging of functionals of the calculus of variations and elasticity theory[J], Math. USSR. Izv., 29(1987), 33-36.
  • 3Marcellini, P., Regularity and existence of solutions of elliptic equations with p, q-growth conditions [J], J. Diff. Zqu., 90(1991), 1-30.
  • 4Fan, X. L. & Zhao, D., A class of De Giorgi type and HSlder continuity [J], Nonlinear Anal., 36(1999), 295-318.
  • 5Fan, X. L. & Zhao, D., The quasi-minimizer of integral functionals with m(x)-growth conditions [J], Nonlinear Anal., 39:7(2000), 807-816.
  • 6Pratter, M. & Weinberger, H. F., Maximum principles in differential equations [M],Prentice Hall, Englewood Cliffs, N J, 1967.
  • 7Trudinger, N. S., On Harnack type inequahties and their application to quasi-hnear elliptic equations [J], Comm. Pure Appl. Math., 20(1967), 721-747.
  • 8Vazqucz, J. L., A strong maximum principle for some quasilinear elliptic equations [J],Appl. Math. Optim., 12(1984), 191-202.
  • 9Heinonen, J., Kilpelainen, T. & Martio, O., Nonlinear potential theory of degenerate elliptic equations [M], Clarendon Press, Oxford 1993.
  • 10Garcia-Melian, J. & Sabina de Lis, J., Maximum and comparison principles for operators involving the p-Laplacian [J], J. Math. Anal. Appl., 218(1998), 49-65.

二级参考文献3

共引文献2

同被引文献31

  • 1杨国英,王明新.带有Neumann边界的p-Laplacian方程组正解的存在性(英文)[J].南京大学学报(数学半年刊),2007,24(1):1-10. 被引量:1
  • 2Dupaigne L,Ghergu M, Radu[escu V. Lane-emden.-Fowler equations with convection and singular potential[ J ]. J Math Pures Appl, 2007,87: 563-581.
  • 3Fan X, Zhao D. On the spaces Lt'(x~ (ft) and Wm·p(x) (Ω) [ J]. J Math Anal Appl,2001,263 :424-446.
  • 4Fan X, Shen J, Zhao D. Sobolev embedding theorem,,; for spaces Wk.p(x) (Ω) [ J ]. J Math Anal Appl, 2001,262 : 749-760.
  • 5Harjulehto P, Haastfi P, Koskenoja M. Hardy' s inequality in variable exponent Sobolev spaces [ J ]. Georgian Math J,2005,12 (3) :431-442.
  • 6Fan X. Solutions for p(x)-Laplacian Dirichlet Problems with Singular Coefficients[J]. J Math Anal Appl,2005 ,312 :464-477.
  • 7Raghavendra V, Sreenadh K. Nontrivial solutions fi~r perturbations of a Hardy-Sobolev operator on unbounded domains[ J ]. J Math Anal Appl, 2003, 288 : 314-325.
  • 8Willem M. Minimax theorems[ M ]. Birkhauser Boston, 1996:20-32.
  • 9Crandall M C, Rabinowitz P H, Tartar L. On a Dirichlet problem with a singular nonlinearity[J]. Commu- nications in Partial Differential Equations, 1977, 2: 193-222.
  • 10Lazer A C, Mekenna P J. On a singular nonlinear elliptic boundary value problem[J]. Proceedings of American Mathematical Society, 1991, 111: 721-730.

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部