期刊文献+

大数据驱动下情报研究知识库的应用:以石墨烯领域为例

Application of Intelligence Analysis Knowledge Base Driven by Big Data: Taking the Graphene Field as an Example
下载PDF
导出
摘要 [目的/意义]文章基于领域情报研究知识库三位一体的体系架构,以石墨稀领域为例,进行情报研究知识库的应用研究。[方法/过程]首先,对总体应用方案进行设计;然后,基于文本语义空间进行语义检索实证研究,并利用专家知识地图进行专家发现;最后,从时间分布、研究者分布、机构分布、研究热点以及主题挖掘五个方面进行领域情报分析与挖掘。[结果/结论]文章以石墨烯领域情报研究知识库为例,从多层面进行应用研究,展现我国石墨烯领域整体研究情况,并为领域情报研究中智能化的情报研究提供借鉴。 [Purpose/significance]Based on the trinity architecture of the domain intelligence analysis knowledge base,taking the graphene field as an example,this paper studies the application of intelligence analysis knowledge base. [Method/process]First,the overall application plan is designed. Then,semantic retrieval is empirically studied based on text semantic space,and expert knowledge map is used to recognize experts. Finally,domain intelligence analysis and mining is analyzed and extracted from the five aspects of time distribution,researcher distribution,institutional distribution,research hotspot,and topic mining. [Result/conclusion] The paper takes graphene field intelligence analysis knowledge base as an example for multi-level application study. It is hoped to demonstrate the overall research status of the graphene field in China,and provide references for intelligent intelligence research in domain intelligence research.
作者 曹嘉君 王曰芬 宋小康 Cao Jiajun
出处 《情报理论与实践》 CSSCI 北大核心 2019年第1期41-47,40,共8页 Information Studies:Theory & Application
基金 国家社会科学基金重大招标项目"面向知识创新服务的数据科学理论与方法研究"(项目编号:16ZDA224) 江苏省研究生科研与实践创新计划项目"基于数据科学的专家在线知识创新平台构建研究"(项目编号:KYCX18_0344)的成果之一
关键词 大数据 情报研究知识库 情报分析 语义检索 专家发现 big data intelligence analysis knowledge base intelligence analysis semantic retrieval expert recognition
  • 相关文献

参考文献2

二级参考文献34

  • 1北京科技情报学会等[编],缪其浩.市场竞争和竞争情报[M]军事医学科学出版社,1996.
  • 2BLEO D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J].Journal of machine learning research, 2003,3:993-1022.
  • 3SCOTT J. Social network analysis[M]. London:Sage, 2012.
  • 4BLEI D M, LAFFERTY J D. A correlated topic model of science[J]. The annals of applied statistics, 2007,1(1):17-35.
  • 5GRIFFITHS T L,STEYVERS M. Finding scientific topics[J].Proceedings of the National Academy of Sciences of the United States of America, 2004,101(1):5228-5235.
  • 6HE Q, CHEN B, PEI J, et al. Detecting topic evolution in scientific literature:how can citations help?[C]//Proceedings of the 18th ACM conference on information and knowledge management. New York:ACM, 2009:957-966.
  • 7ALSUMAIT L, BARBARà D, DOMENICONI C. On-line LDA:adaptive topic models for mining text streams with applications to topic detection and tracking[C]//Eighth IEEE international conference on data mining. Piscataway:IEEE, 2008:3-12.
  • 8HASSAN S U, HADDAWY P. Analyzing knowledge flows of scientific literature through semantic links:a case study in the field of energy[J]. Scientometrics, 2015, 103(1):33-46.
  • 9DIETZ L, BICKEL S, SCHEFFER T. Unsupervised prediction of citation influences[C]//Proceedings of the 24th international conference on machine learning.New York:ACM, 2007:233-240.
  • 10STEYVERS M, SMYTH P, ROSEN-ZVI M, et al. Probabilistic author-topic models for information discovery[C]//Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining.New York:ACM,2004:306-315.

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部