期刊文献+

基于用户个人及群体画像相结合的图书个性化推荐应用研究 被引量:65

Application Research on Personalized Recommendation of Books Based on User Portrait and Group Portrait
下载PDF
导出
摘要 [目的/意义]为解决图书馆长久以来"藏与用"之间的矛盾,为读者提供个性化图书推荐等精准服务。[方法/过程]利用用户画像方法和技术,构建读者的个人画像与群体画像,并综合两者所反映出的读者借阅行为特征,实现图书的个性化推荐。[结果/结论]通过问卷调查证实测试用数据反馈结果较为良好,同时也反映出用户画像在图书推荐领域具有一定的可行性。[局限]数据全面性不够,构建用户画像的技术不够新颖,结果的测评方法较为主观等。 [Purpose/significance] This paper aims to solve the contradiction between'collecting and using'in the field of library,as well as provides readers with precise services such as personalized book recommendation. [Method/process] Using the method and technology of user portrait,the reader’s personal portrait and the group portrait are constructed,and the reader’s borrowing behavior features are integrated to realize the personalized recommendation of the books. [Result/conclusion]The results of questionnaires show that the data feedback results of the test are relatively good,and also reflect the feasibility of user portrait in the field of book recommendation field. [Limitations]The data are not comprehensive enough,the technology of building user portrait is not very new,and the evaluation method is relatively subjective.
作者 何娟 He Juan
出处 《情报理论与实践》 CSSCI 北大核心 2019年第1期129-133,160,共6页 Information Studies:Theory & Application
关键词 用户画像 个人画像 群体画像 图书推荐 应用研究 user portrait personal portrait group portrait books recommendation application study
  • 相关文献

参考文献6

二级参考文献45

  • 1刘英姿,吴昊.客户细分方法研究综述[J].管理工程学报,2006,20(1):53-57. 被引量:86
  • 2Hatzivassiloglou V, Klavans J L, Holcombe M L, et al.Simfinder: A flexible clustering tool for surmnarization. In: Proceedings of the NAACI, 2001 Workshop on Automatic Surrunarization, Pittsburgh, PA, 2001, 41-49 .
  • 3Jain A K,Dubes R C. Algorithms for clustering data. Englewood Cliffs NJ, USA: Prentice Hall, 1988.
  • 4Sneath P H, Sokal R R. Numerical Taxonomy. London, UK:Freeman. 1973.
  • 5King B. Step-wise clustering procedures. Journal of the Amercian Statistical Association , 1967, 69(8) :86-101.
  • 6Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases. Information Systems, 2001, 26( 1 ) : 35-58.
  • 7Guha S, Rastogi R, Shim K. ROCK: a robust clustering algorithm for categorical attributes. In : Proceedings of the 15th International Cotfference on Data Engineering. Sydney: IEEE Computer Society Press, 1999. 512-521.
  • 8Karypis G, Han E H, Kumar V. Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 1999, 32(8) :68-75.
  • 9Han E H, Karypis G,Kumar V, et al. Clustering based on association rule hypergraphs. In: 1997 SIG-MOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Tucson, Arizona, USA, 1997. 9-13.
  • 10MacQueen J B. Some methods for classification and analysis of multivariate observations. In : Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley: University of California Press, 1967. 281-297.

共引文献323

同被引文献665

引证文献65

二级引证文献458

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部