摘要
为解决异构无人系统群协同作战使用问题,提出了无人系统任务规划模型及基于遗传算法的任务方案优化方法。该方法通过有向无环图和路径图描述任务协同关系,将无人系统任务联盟及对应的任务序列作为遗传算法染色体个体编码,通过任务联盟之间的变换实现遗传交叉算子;设计了任务联盟和任务序列的遗传变异方法,优化任务联盟之间的比例结构和无人系统任务负载。仿真结果表明,该方法能够较好地解决异构无人系统群任务规划问题。相对已有相关研究工作,具有更好的通用性。
To solve the problem of cooperative operation of heterogeneous unmanned system,a mission planning model of unmanned system and a task scheme optimization method based on genetic algorithm are proposed.The directed acyclic graph and path graph are used to describe the cooperative relationship between tasks,the task alliance and its corresponding task sequence are used as the chromosome individual coding of genetic algorithm,and the genetic crossover operator is realized by the transformation between task alliances;the genetic mutation method of task alliance and task sequence is designed to optimize the proportional structure of the task alliances and the distribution of workload.The simulation results show that this method can solve the mission planning problem of heterogeneous unmanned system.Compared with existing research work,it has better versatility.
作者
马硕
马亚平
MA Shuo;MA Ya-ping(PLA National Defense University,Beijing 100091,China)
出处
《指挥控制与仿真》
2019年第2期24-30,共7页
Command Control & Simulation
关键词
无人系统
协同作战
任务规划
集群
遗传算法
unmanned system
cooperative operation
mission planning
grouping
genetic algorithm