期刊文献+

基于工业互联网的汽车行业智能制造信息化业务体系构建 被引量:6

Construction of Intelligent Manufacturing Information System for Automobile Industry Based on Industrial Internet
下载PDF
导出
摘要 智能制造是贯彻落实《中国制造2025》的战略部署,是两化深度融合的主攻方向,是增强中国制造业发展优势的关键所在。汽车行业要实现智能制造转型升级,工业互联网是重要途径与手段。通过构建基于工业互联网理念的智能制造信息化体系,打通信息孤岛,整合车企内部生产制造大数据资源,构建微服务组件库及模型开发库以此支撑智能制造典型场景应用。本文重点对汽车行业智能制造信息化业务体系总体架构进行详细解析,分别对构成该体系的边缘层、云基础设施层(IaaS)、平台服务层(PaaS)以及应用服务层(SaaS)展开分析,助力汽车行业智能制造的有效落地。 Intelligent manufacturing is the strategic deployment of implementing'Made in China 2025',the main direction of deep integration of the informatization and industrialization,and the key to enhance the development advantages of China’s manufacturing industry.In order to achieve the transformation and upgrading of intelligent manufacturing industry,the industrial Internet is an important way and means.By constructing the information system of intelligent manufacturing based on the concept of industrial Internet,connecting the information island,integrating the large data resources of production and manufacturing in automobile factory,the micro-service component library and model development library are constructed to support the typical scenario application of intelligent manufacturing.This paper focuses on the overall structure of the intelligent manufacturing informatization business system in automobile industry.The edge layer,cloud infrastructure layer(IaaS),platform service layer(PaaS)and application service layer(SaaS)of the system are analyzed respectively,to help the automotive industry intelligent manufacturing effective landing.
作者 赵甲 于英杰 赵涛 ZHAO Jia;YU Ying-jie;ZHAO Tao(Tianjin Kadake Data Co.,Ltd.,Tianjin 300300;China Automotive Technology and Research Centre Co.,Ltd.,Tianjin 300300,China)
出处 《汽车电器》 2019年第1期1-4,共4页 Auto Electric Parts
关键词 汽车行业 智能制造 工业互联网 信息孤岛 云服务 automotive industry intelligent manufacturing industry Internet platform information island cloud service
  • 相关文献

参考文献6

二级参考文献95

  • 1张贤,赵明光.异地协同产品开发系统中资源选择策略研究[J].微计算机信息,2005,21(4):214-215. 被引量:2
  • 2高洪深著.《决策支持系统》,[M]清华大学出版社,2003.
  • 3Hadoop[EB/OL]. [2012-03-19]. http://hadoop.apache.org.
  • 4TomWhite.Hadoop权威指南[M].2版.北京:清华大学出版社,2011:15-73,167-188.
  • 5Tom White. Hadoop The Definitive Guide 2nd Edition [M]. Oreilly, 2010:41-73,167-188.
  • 6Jason Venner. Pro Hadoop[ M]. Apress, 2009 : 27-53.
  • 7Zhuo Tang,Junqing Zhou,Kenli Li,Ruixuan Li.A MapReduce task scheduling algorithm for deadline constraints[J]. Cluster Computing . 2013 (4)
  • 8Pengsen Cheng,Junxiu An.The Key as Dictionary Compression Method of Inverted Index Table under the Hbase Database[J]. Journal of Software . 2013 (5)
  • 9Abhishek Verma,Brian Cho,Nicolas Zea,Indranil Gupta,Roy H. Campbell.Breaking the MapReduce stage barrier[J]. Cluster Computing . 2013 (1)
  • 10Yingyi Bu,Bill Howe,Magdalena Balazinska,Michael D. Ernst.The HaLoop approach to large-scale iterative data analysis[J]. The VLDB Journal . 2012 (2)

共引文献261

同被引文献29

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部