期刊文献+

R^2中凸域的等周亏格的一个上界

原文传递
导出
摘要 本文运用平面凸域的性质给出了平面上凸域D的等周亏格的一个上界。
作者 马磊
出处 《黔东南民族职业技术学院学报(综合版)》 2011年第1期1-2,共2页 Journal of Southeast Guizhou Vocational College of Technology for Nationalities(Comprehensive Edition)
  • 相关文献

参考文献12

  • 1LI Ming & ZHOU JiaZu School of Mathematics and Statistics,Southwest University,Chongqing 400715,China.An isoperimetric deficit upper bound of the convex domain in a surface of constant curvature[J].Science China Mathematics,2010,53(8):1941-1946. 被引量:17
  • 2周家足.平面Bonnesen型不等式[J].数学学报(中文版),2007,50(6):1397-1402. 被引量:33
  • 3O.Bottena.Eine obere Grenze fur das isoperimetrische Defizitebener Kurven[].NeerlAkaWetenschProcA.1933
  • 4J.Zhou,F.Chen.The Bonnesen-type inequalities in aplane ofconstant curvature[].Journal ofKorean MathSco.2007
  • 5J.Zhou,L.Ma.upper bound ofthe isoperimetric deficit[]..
  • 6D.Ren.Topics in Integral Geometry[]..1994
  • 7J.Zhou,Y.Xia,C.Zeng.Some newBonnesen-style ine-qualities[].JKorean MathSoc.2011
  • 8Osserman R.The isoperimetric inequality[].Bulletin of the American Mathematical Society.1978
  • 9Osserman R.Bonnesen-style isoperimetric inequalities[].The American Mathematical Monthly.1979
  • 10Yu. D. Burago,V. A. Zalgaller.Geometric Inequalities[]..1998

二级参考文献42

  • 1Osserman R., Bonnesen-style isoperimetric inequality, Amer. Math. Monthly, 1979, 86: 1-29.
  • 2Ren D., Topics in integral geometry, Sigapore: World Scientific, 1994.
  • 3Santalo L. A., Integral geometry and geometric probability, Reading, Mass, Addison-Wesley, 1976.
  • 4Zhou J., On the Willmore deficit of convex surfaces, Lectures in Applied Mathematics of Amer. Math. Soc., 1994, 30: 279-287.
  • 5Hsiang W. Y., An elementary proof of the isoperimetric problem, Ann. of Math., 2002, 23A(1): 7-12.
  • 6Zhang G., A sufficient condition for one convex body containing another, Chin. Ann. of Math., 1988, 4: 447-451.
  • 7Zhang G., Zhou J., Containment measures in integral geometry, Integral geometry and Convexity, Singapore: World Scientific, 2006, 153-168.
  • 8Zhou J., A kinematic formula and analogous of Hadwiger's theorem in space, Contemporary Mathematics, 1992, 140: 159-167.
  • 9Zhou J., The sufficient condition for a convex domain to contain another in R^4, Proc. Amer. Math. Soc., 1994, 212: 907-913.
  • 10Zhou J., kinematic formulas for mean curvature powers of hypersurfaces and Hadwiger's theorem in R^2n, Trans. Amer. Math. Soc., 1994, 345: 243-262.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部