期刊文献+

A Novel Method of Gene Regulatory Network Structure Inference from Gene Knock-Out Expression Data 被引量:1

A Novel Method of Gene Regulatory Network Structure Inference from Gene Knock-Out Expression Data
原文传递
导出
摘要 Inferring Gene Regulatory Networks(GRNs) structure from gene expression data has been a challenging problem in systems biology. It is critical to identify complicated regulatory relationships among genes for understanding regulatory mechanisms in cells. Various methods based on information theory have been developed to infer GRNs. However, these methods introduce many redundant regulatory relationships in the network inference process due to external noise in the original data, topology sparseness in the network structure, and non-linear dependency among genes. Especially as the network size increases, the performance of these methods decreases dramatically. In this paper, a novel network structure inference method named Loc-PCA-CMI is proposed that first identifies local overlapped gene clusters, and then infers the local network structure for each cluster by a Path Consistency Algorithm based on Conditional Mutual Information(PCA-CMI). The final structure of the GRN is denoted as dependence among genes by an ensemble of the obtained local network structures. Loc-PCA-CMI was evaluated on DREAM3 knock-out datasets, and its performance was compared to other information theorybased network inference methods including ARACNE, MRNET, PCA-CMI, and PCA-PMI. Experimental results demonstrate our novel method Loc-PCA-CMI outperforms the other four methods in DREAM3 datasets especially in size 50 and 100 networks. Inferring Gene Regulatory Networks(GRNs) structure from gene expression data has been a challenging problem in systems biology. It is critical to identify complicated regulatory relationships among genes for understanding regulatory mechanisms in cells. Various methods based on information theory have been developed to infer GRNs. However, these methods introduce many redundant regulatory relationships in the network inference process due to external noise in the original data, topology sparseness in the network structure, and non-linear dependency among genes. Especially as the network size increases, the performance of these methods decreases dramatically. In this paper, a novel network structure inference method named Loc-PCA-CMI is proposed that first identifies local overlapped gene clusters, and then infers the local network structure for each cluster by a Path Consistency Algorithm based on Conditional Mutual Information(PCA-CMI). The final structure of the GRN is denoted as dependence among genes by an ensemble of the obtained local network structures. Loc-PCA-CMI was evaluated on DREAM3 knock-out datasets, and its performance was compared to other information theorybased network inference methods including ARACNE, MRNET, PCA-CMI, and PCA-PMI. Experimental results demonstrate our novel method Loc-PCA-CMI outperforms the other four methods in DREAM3 datasets especially in size 50 and 100 networks.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第4期446-454,共9页 清华大学学报(自然科学版(英文版)
基金 supported in part by the National Natural Science Foundation of China(Nos.61622213and 61732009) the 111 Project(No.B18059) the Hunan Provincial Science and Technology Program(No.2018WK4001)
关键词 GENE REGULATORY networks network INFERENCE PATH CONSISTENCY algorithm gene regulatory networks network inference path consistency algorithm
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部