期刊文献+

Fusion Analysis of Resting-State Networks and Its Application to Alzheimer's Disease 被引量:2

Fusion Analysis of Resting-State Networks and Its Application to Alzheimer's Disease
原文传递
导出
摘要 Functional networks are extracted from resting-state functional magnetic resonance imaging data to explore the biomarkers for distinguishing brain disorders in disease diagnosis. Previous works have primarily focused on using a single Resting-State Network(RSN) with various techniques. Here, we apply fusion analysis of RSNs to capturing biomarkers that can combine the complementary information among the RSNs. Experiments are carried out on three groups of subjects, i.e., Cognition Normal(CN), Early Mild Cognitive Impairment(EMCI), and Alzheimer's Disease(AD) groups, which correspond to the three progressing stages of AD; each group contains18 subjects. First, we apply group Independent Component Analysis(ICA) to extracting the Default Mode Network(DMN) and Dorsal Attention Network(DAN) for each subject group. Then, by obtaining the common DMN and DAN as templates for each group, we employ the individual ICA to extract the DMN and DAN for each subject.Finally, we fuse the DMNs and DANs to explore the biomarkers. The results show that(1) the templates generated by group ICA can extract the RSN for each subject by individual ICA effectively;(2) the RSNs combined with the fusion analysis can obtain more informative biomarkers than without fusion analysis;(3) the most different regions of DMN and DAN are found between CN and EMCI and between EMCI and AD, which show differences. For the DMN, the difference in the medial prefrontal cortex between the EMCI and AD is smaller than that between CN and EMCI, whereas that in the posterior cingulate between EMCI and AD is larger. As for the DAN, the difference in the intraparietal sulcus is smaller than that between CN and EMCI;(4) extracting DMN and DAN for each subject via the back reconstruction of group ICA is invalid. Functional networks are extracted from resting-state functional magnetic resonance imaging data to explore the biomarkers for distinguishing brain disorders in disease diagnosis. Previous works have primarily focused on using a single Resting-State Network(RSN) with various techniques. Here, we apply fusion analysis of RSNs to capturing biomarkers that can combine the complementary information among the RSNs. Experiments are carried out on three groups of subjects, i.e., Cognition Normal(CN), Early Mild Cognitive Impairment(EMCI), and Alzheimer's Disease(AD) groups, which correspond to the three progressing stages of AD; each group contains18 subjects. First, we apply group Independent Component Analysis(ICA) to extracting the Default Mode Network(DMN) and Dorsal Attention Network(DAN) for each subject group. Then, by obtaining the common DMN and DAN as templates for each group, we employ the individual ICA to extract the DMN and DAN for each subject.Finally, we fuse the DMNs and DANs to explore the biomarkers. The results show that(1) the templates generated by group ICA can extract the RSN for each subject by individual ICA effectively;(2) the RSNs combined with the fusion analysis can obtain more informative biomarkers than without fusion analysis;(3) the most different regions of DMN and DAN are found between CN and EMCI and between EMCI and AD, which show differences. For the DMN, the difference in the medial prefrontal cortex between the EMCI and AD is smaller than that between CN and EMCI, whereas that in the posterior cingulate between EMCI and AD is larger. As for the DAN, the difference in the intraparietal sulcus is smaller than that between CN and EMCI;(4) extracting DMN and DAN for each subject via the back reconstruction of group ICA is invalid.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第4期456-467,共12页 清华大学学报(自然科学版(英文版)
基金 supported by the National Natural Science Foundation of China(NSFC)(No.61772367) the Program of Shanghai Subject Chief Scientist(No.15XD1503600) supported by the National Key Research and Development Program of China(No.2016YFC0901704)
关键词 INDEPENDENT Component Analysis(ICA) group ANALYSIS FUSION ANALYSIS Alzheimer’s Disease(AD) Independent Component Analysis(ICA) group analysis fusion analysis Alzheimer's Disease(AD)
  • 相关文献

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部