期刊文献+

Detecting Fake News Over Online Social Media via Domain Reputations and Content Understanding 被引量:1

Detecting Fake News Over Online Social Media via Domain Reputations and Content Understanding
原文传递
导出
摘要 Fake news has recently leveraged the power and scale of online social media to effectively spread misinformation which not only erodes the trust of people on traditional presses and journalisms, but also manipulates the opinions and sentiments of the public. Detecting fake news is a daunting challenge due to subtle difference between real and fake news. As a first step of fighting with fake news, this paper characterizes hundreds of popular fake and real news measured by shares, reactions, and comments on Facebook from two perspectives:domain reputations and content understanding. Our domain reputation analysis reveals that the Web sites of the fake and real news publishers exhibit diverse registration behaviors, registration timing, domain rankings, and domain popularity. In addition, fake news tends to disappear from the Web after a certain amount of time. The content characterizations on the fake and real news corpus suggest that simply applying term frequency-inverse document frequency(tf-idf) and Latent Dirichlet Allocation(LDA) topic modeling is inefficient in detecting fake news,while exploring document similarity with the term and word vectors is a very promising direction for predicting fake and real news. To the best of our knowledge, this is the first effort to systematically study domain reputations and content characteristics of fake and real news, which will provide key insights for effectively detecting fake news on social media. Fake news has recently leveraged the power and scale of online social media to effectively spread misinformation which not only erodes the trust of people on traditional presses and journalisms, but also manipulates the opinions and sentiments of the public. Detecting fake news is a daunting challenge due to subtle difference between real and fake news. As a first step of fighting with fake news, this paper characterizes hundreds of popular fake and real news measured by shares, reactions, and comments on Facebook from two perspectives:domain reputations and content understanding. Our domain reputation analysis reveals that the Web sites of the fake and real news publishers exhibit diverse registration behaviors, registration timing, domain rankings, and domain popularity. In addition, fake news tends to disappear from the Web after a certain amount of time. The content characterizations on the fake and real news corpus suggest that simply applying term frequency-inverse document frequency(tf-idf) and Latent Dirichlet Allocation(LDA) topic modeling is inefficient in detecting fake news,while exploring document similarity with the term and word vectors is a very promising direction for predicting fake and real news. To the best of our knowledge, this is the first effort to systematically study domain reputations and content characteristics of fake and real news, which will provide key insights for effectively detecting fake news on social media.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2020年第1期20-27,共8页 清华大学学报(自然科学版(英文版)
基金 supported in part by National Science Foundation (NSF) Algorithms for Threat Detection (ATD) Program (No. DMS #1737861) NSF Computer and Network Systems (CNS) Program (No. CNS #1816995)
关键词 SOCIAL MEDIA FAKE NEWS detection CONTENT modeling DOMAIN reputations social media fake news detection content modeling domain reputations
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部