摘要
With the rapid development of Web3 D technologies, sketch-based model retrieval has become an increasingly important challenge, while the application of Virtual Reality and 3 D technologies has made shape retrieval of furniture over a web browser feasible. In this paper, we propose a learning framework for shape retrieval based on two Siamese VGG-16 Convolutional Neural Networks(CNNs), and a CNN-based hybrid learning algorithm to select the best view for a shape. In this algorithm, the AlexNet and VGG-16 CNN architectures are used to perform classification tasks and to extract features, respectively. In addition, a feature fusion method is used to measure the similarity relation of the output features from the two Siamese networks. The proposed framework can provide new alternatives for furniture retrieval in the Web3 D environment. The primary innovation is in the employment of deep learning methods to solve the challenge of obtaining the best view of 3 D furniture,and to address cross-domain feature learning problems. We conduct an experiment to verify the feasibility of the framework and the results show our approach to be superior in comparison to many mainstream state-of-the-art approaches.
With the rapid development of Web3 D technologies, sketch-based model retrieval has become an increasingly important challenge, while the application of Virtual Reality and 3 D technologies has made shape retrieval of furniture over a web browser feasible. In this paper, we propose a learning framework for shape retrieval based on two Siamese VGG-16 Convolutional Neural Networks(CNNs), and a CNN-based hybrid learning algorithm to select the best view for a shape. In this algorithm, the AlexNet and VGG-16 CNN architectures are used to perform classification tasks and to extract features, respectively. In addition, a feature fusion method is used to measure the similarity relation of the output features from the two Siamese networks. The proposed framework can provide new alternatives for furniture retrieval in the Web3 D environment. The primary innovation is in the employment of deep learning methods to solve the challenge of obtaining the best view of 3 D furniture,and to address cross-domain feature learning problems. We conduct an experiment to verify the feasibility of the framework and the results show our approach to be superior in comparison to many mainstream state-of-the-art approaches.
基金
supported in part by the Fundamental Research Funds for the Central Universities in China (No. 2100219066)
the Key Fundamental Research Funds for the Central Universities in China (No. 0200219153)