期刊文献+

仿人足球机器人的非预定义足球检测算法 被引量:1

Unpredefined ball detection algorithm for humanoid soccer robots
原文传递
导出
摘要 为适应人类赛场环境,仿人足球机器人需能够识别未预先定义足球,此时足球不再具有固定的与场地鲜明对比的颜色,因而不能通过传统的单色块识别策略解决。该文将足球颜色划分为专有色和共有色两类,采用两轮颜色标记方法生成颜色查找表;在图像像素级联通分割获得色块的基础上,提出基于图连接关系的宏像素聚类算法,从而得到若干足球识别候选对象;再利用模糊逻辑方法中的隶属度函数从候选对象中获得最佳足球识别结果。实验表明在不具备高性能计算硬件平台的情况下,算法能够在存在大量干扰,远近距离大幅度变化的条件下准确识别出非预先定义的足球,避免与边线、机器人等对象的混淆,且达到每秒15帧的计算速率。该算法能够在严格受限的计算能力下达到高效的足球识别能力,从而为参赛机器人提供了一种崭新策略。 Humanoid soccer robots need to adapt to the conditions in human soccer games such as detecting a soccer ball that does not have predefined characteristics such as a definite color and that may blend in with the playing field.For such conditions,the problem cannot be solved by classical detection strategies based on a single colorblock.In this study,the ball color is split into a specific color and a shared color.Two rounds of labelling are used to generate a color lookup table.Color-blocks obtained by pixel-level segmentation are used in a marco-pixel clustering method based on a connecting relationship graph to generate several ball candidates.The best ball object is estimated via the membership function by fuzzy logic.Tests show that the method is able to detect unpredefined balls even in a very disturbed environment and at large distances from the robot and is also able to avoid confusion with the border lines and other robots on the field without excessive computing requirements.The calculations can reach a high framerate of 15 frames per second.This strategy provides an efficient detection method using strictly limited computing resources for robot soccer players.
作者 张继文 宋立滨 许君杰 石循磊 刘莉 ZHANG Jiwen;SONG Libin;XU Junjie;SHI Xunlei;LIU Li(Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China;Tsinghua Innovation Center in Dongguan,Dongguan,523808,China)
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第4期298-305,共8页 Journal of Tsinghua University(Science and Technology)
基金 广东省省级科技计划项目(2017A040405002) 国家自然科学基金资助项目(61403225)
关键词 仿人机器人 计算机视觉 聚类 颜色标记 模糊逻辑 humanoid robot computer vision clustering color labeling fuzzy logic
  • 相关文献

参考文献3

二级参考文献42

  • 1段勇,徐心和.自主足球机器人视觉系统结构及关键技术[J].东北大学学报(自然科学版),2006,27(1):9-12. 被引量:8
  • 2RENCKEN W D. Concurrent localization and map building for mobile robots using ultrasonic sensors [C] // Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems. Yokohama: IEEE, 1993: 2192-2197.
  • 3GUTMANN J S, SCHLEGE C. AMOS: comparison of scan malching approaches for self localization in indoor environments [C]// Proceedings of 1st Euromicro Workshop on Advanced Mobile Robots. Kaiserslautern: IEEE, 1996, 61-67.
  • 4CARLOS M, PEDRO I.. A localization method for a soccer robot using a vision based omni-directional sensor [C]// Proceedings of RoboCup Workshop 2000. Melbourne: Springer Verlag, 2000: 96-107.
  • 5RoboCup humanoid soccer official site. (2008 -05). http://www, humanoidsoccer, org/.
  • 6CHENG H D, JIANG X H, SUN Y, et al. Color image segmentation: advances and prospects [J]. Pattern Recognition, 2001, 34(12) : 2259 - 2281.
  • 7CELENK M. A color clustering technique for image segmentation [J]. Computer Vision, Graphics, and Image Processing, 1990, 52(2): 145 - 170.
  • 8MURCH C L, CHALUP S K. Combining edge detec tion and color segmentation in the four-legged league [C]// Australasian Conference on Robotics and Automation. Canberra: Springer-Verlag, 2004.
  • 9BANDLOW T, KI.UPSCH M, HANEK R, et al. Fast image segmentation, object recognition and localization in a RoboCup scenario [C]// Proceedings of the Third RoboCup Workshop. Sweden: Springer-Verlag, 2004: 22-27.
  • 10QUEK F K H. An algorithm for the rapid computation of boundaries of run-length encoded regions [J]. Pattern Recognition, 1999, 33(10): 1621- 1649.

共引文献12

同被引文献2

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部