期刊文献+

融入罪名关键词的法律判决预测多任务学习模型 被引量:25

Multi-task learning model for legal judgment predictions with charge keywords
原文传递
导出
摘要 作为新兴的智慧法院技术之一,基于案情描述文本的法律判决预测越来越引起自然语言处理界的关注。罪名预测和法条推荐是法律判决预测的2个重要子任务。这2个子任务密切相关、相互影响,但常常当作独立的任务分别处理。此外,罪名预测和法条推荐还面临易混淆罪名问题。为了解决这些问题,该文提出一种多任务学习模型对这2个任务进行联合建模,同时采用统计方法从案情描述中抽取有助于区分易混淆罪名的指示性罪名关键词,并将它们融入到多任务学习模型中。在CAIL2018法律数据集上的实验结果表明:融入罪名关键词信息的多任务学习模型能够有效解决易混淆罪名问题,并且能够显著地提高罪名预测和法条推荐这2个任务的性能。 The legal field is using more artificial intelligence methods such as legal judgment prediction(LJP)based on case description texts using natural language processing.Charge prediction and law article recommendations are two important LJP sub-tasks that are closely related and interact with each other.However,previous studies have usually analyzed them as two independent tasks that are analyzed separately.Furthermore,charge prediction and law article recommendations both face the problem of confusing charges.To this end,this paper presents a multi-task learning model for joint modeling of charge prediction and law article recommendations.Confusing charges are handled by using a set of charge keywords extracted from case description texts using statistical techniques for integration into the multi-task learning model.This method was evaluated using the CAIL2018 legal dataset.The results show that incorporating the charge keywords into the multi-task learning model effectively resolves the confusing charge problem and significantly improves both the charge prediction and the law article recommendation results.
作者 刘宗林 张梅山 甄冉冉 公佐权 余南 付国宏 LIU Zonglin;ZHANG Meishan;ZHEN Ranran;GONG Zuoquan;YU Nan;FU Guohong(Heilongjiang University,Harbin150080,China;School of Information,Guizhou University ofFinance and Economics,Guiyang550025,China)
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第7期497-504,共8页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(61672211,61602160,U1836222) 黑龙江省自然科学基金资助项目(F2016036)
关键词 法律判决预测 多任务学习 罪名关键词 legal judgment prediction multi-task learning charge keywords
  • 相关文献

参考文献3

二级参考文献19

  • 1李素建,王厚峰,俞士汶,辛乘胜.关键词自动标引的最大熵模型应用研究[J].计算机学报,2004,27(9):1192-1197. 被引量:92
  • 2王军.词表的自动丰富——从元数据中提取关键词及其定位[J].中文信息学报,2005,19(6):36-43. 被引量:40
  • 3罗杰,陈力,夏德麟,王凯.基于新的关键词提取方法的快速文本分类系统[J].计算机应用研究,2006,23(4):32-34. 被引量:17
  • 4索红光,刘玉树,曹淑英.一种基于词汇链的关键词抽取方法[J].中文信息学报,2006,20(6):25-30. 被引量:88
  • 5赵世俊.智利发生8.8级强震多同拉响海啸预警[EB/OL].http://news.Xinhuanet.com/wodd/2010-02/28/content_ 13065435.htm,2010- 02-28 .tent_ 13065435. htm, 2010-02-28.
  • 6高轶军.莫斯科地铁遭两女人弹袭击至少38人丧生[EB/OL].http://world.people.com.cn/GB/1029/11252259.html.2010-02-28.
  • 7苏楠.云南局部干旱已达100年一遇[EB/OL].http://society.people.com.cn/GB/41158/11154789.html.2010-03-16.
  • 8H P Luhn.A Statistical Approach to the Mechanized Encoding and Searching of Literary Information [J ]. IBM Journal of Research and Development, 1957,1 (4) :309-317.
  • 9Li Juanzi, Fan Qina, Zhang Kuo. Keyword Extraction Based on TF/IDF for Chinese News Document [J ]. Wuhan University Journal of Nat- ural Sciences. 2007.12 ( 5 ).
  • 10K Zhang,H Xu ,J Tang. Keyword Extraction Using Support Vector Machine [C ]//Proceedings of the Seventh International Conference on Web-Age Information Management, Hong Kong , 2006:85-96.

共引文献120

同被引文献180

引证文献25

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部