期刊文献+

KNO_3-H_2O溶液间歇结晶动力学 被引量:20

KINETIC PARAMETERS OF KNO_3 IN WATER FOR BATCH CRYSTALLIZATION PROCESS
下载PDF
导出
摘要 基于ΔL定律推导了晶体线性生长速率的数学表达式 ,利用已建立的溶液间歇结晶动力学实验研究手段实现了溶液透光率和浓度的在线测量 .利用经验模型关联线性生长速率和相对过饱和度求取了生长动力学参数 ,并与文献值进行了比较 .结果发现 :对于自发成核结晶过程 ,综合动态透光率、过饱和度和经验模型可对成核和生长阶段进行定性识别 . Based on the population balance model and AL law, a crystal growth rate equation was deduced, and an apparatus was built up and used to measure the on-line dynamic transmittance and concentration for the batch cooling crystallization process. The KNO3 in water was tested and its linear growth rate was also calculated with dynamic transmittance and concentration. When crystal growth was dominant in the later stage of crystallization, the KNO3 crystal growth kinetic parameters (kg and g) in the empirical model were obtained by correlating its linear growth rate with the relative supersaturation, and agreed well with those in the literature. For the spontaneous crystallization process, the nucleation and crystal growth stages could be identified qualitatively with the dynamic transmittance, supersaturation and the deduced linear growth rate equation. The growth rate equation and its solution in this paper would be further used for mechanism demonstrations and/or applications of the batch crystallization.
出处 《化工学报》 EI CAS CSCD 北大核心 2003年第7期953-958,共6页 CIESC Journal
关键词 溶液间歇结晶 △L定律 透光率 过饱和度 晶体生长速率 Crystal growth Mathematical models Nitrates Supersaturation
  • 相关文献

参考文献19

  • 1Rawings J B, Miller S M, Witkowski W R. Model Identification and Control of Solution Crystallization Process.Ind. Eng. Chem. Res. , 1993, 32: 1275-1296.
  • 2Monnier O, Fevotte G, Hoff C, Klein J P. Model Identification of Batch Cooling Crystallizations Through Calorimetry and Image Analysis. Chemical Engineering Science, 1997, 52(7): 1125--1139.
  • 3Akoglu K, Tavare N S, Garside J. Dynamic Simulation of a Non-isothermal MSMPR Crystallizer. Chemical Engineering Communication, 1984, 29:353--367.
  • 4Miller S M, Rawlings J B. Model Identification and Control Strategies for Batch Cooling Crystallizers. AIChE J., 1994,40 (8): 1312--1327.
  • 5Chung S H, Ma D L, Braatz R D. Optimal Model-based Experimental Design in Batch Crystallization. Chemometrics and Intelligent Laboratory Systems, 2000, 50:83--90.
  • 6Yan F Q, Rasmuson A C. Estimation of Crystallization Kinetics from Batch Cooling Experiments. AIChE J., 1994, 40 (5):799--812.
  • 7Hloznv L, Sato A, Kubota No. On-line Measurement of Supersaturation During Batch Cooling Crystallization of Ammonium Alum. Journal of Chemical Engineering of Japan, 1992, 25 (5): 604--606.
  • 8Singh B. Using a Crystal Size Distribution Sensor to Improve the Operation and Control of Batch Crystallizers. Analytical Proceedings, 1993, 30 (12): 495--496.
  • 9Fevotte G, Klein J P. Application of On-line Calorimetry to the Advanced Control of Batch Crystallizers. Chemical Engineering Science, 1994, 49 (9) : 1323--1336.
  • 10Fevotte G, Klein J P. A New Policy for the Estimation of the Course of Supersaturation in Batch Crystallization. The Canadian Journal of Chemical Engineering, 1996, 74 : 372--384.

同被引文献271

引证文献20

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部