期刊文献+

介质阻挡均匀大气压辉光放电数值模拟研究 被引量:39

Numerical simulation of dielectric-barrier-controlled glow discharge at atmospheric pressure
原文传递
导出
摘要 通过数值求解一维电子、离子连续性方程和动量方程 ,以及电流连续性方程 ,计算了氦气介质阻挡大气压辉光放电电子、离子密度和电场在放电空间的时空分布 ,以及放电电流密度和绝缘介质板充电电荷密度随时间的变化 .分析讨论所加电压频率、幅值及介质板性质等对均匀大气压辉光放电性质的影响 .当外加电压频率足够高时 ,大量离子被俘获在放电空间 ,空间电荷场又引起足够多的电子滞留在放电空间 .这些种子电子使得在大气压下发生汤森放电 ,放电空间结构类似于低气压辉光放电 ,即存在明显的阴极位降区、负辉区、法拉第暗区和等离子体正柱区等 .所加电压幅值减小 ,放电电流减小 .绝缘介质层的二次电子发射 ,使放电电流增大 .而介质层越厚 ,放电电流越小 ;介电常数越小 。 The space and time distributions of the electric field and the electron and ion densities, as well as the time evolutions of the discharge current density and the surface charge density of the dielectric layer in He dielectric-barrier-controlled glow discharge at atmospheric pressure are calculated by solving the one-dimensional continuity and momentum equations for electrons and ions, coupled to the current continuity equation. The properties of uniform atmospheric pressure glow discharge under the conditions of different driving frequency, voltage or dielectric layer are discussed and analyzed. When the driving frequency is high enough, a large number of ions are trapped and the induced space charge field makes a great many of electrons stay in the discharge volume. These seed electrons lead to a Townsend discharge at atmosphere pressure. The structure of this discharge is similar to that of low-pressure glow discharge, i.e. there exist four specific regions: the cathode fall, the negative glow, the Faraday dark space and the positive column. The discharge current becomes small with decreasing voltage amplitude applied. The secondary electron emission from the dielectric layer makes the discharge current increase. The thicker the dielectric layer is or the smaller the permittivity, the smaller the discharge current is.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2003年第7期1694-1700,共7页 Acta Physica Sinica
基金 国家自然科学基金 (批准号 :10 2 75 0 10 )资助的课题~~
关键词 均匀大气压辉光放电 数值模拟 介质阻挡 等离子体 atmospheric pressure glow discharge dielectric barrier numerical simulation plasma
  • 相关文献

参考文献13

  • 1Kanazawa S, Kogoma M, Morlwaki T and Okazaki S 1988 J. Phys.D 21 838.
  • 2Yokoyama T, Kogoma M, Moriwaki T and Okazakl S 1990 J. Phys.D:Appl. Phys. 23 1125.
  • 3Kanda N, Kogoma M, Jinno H, Uchiyama H and Okazaki S 1991 In"Proc. 10th International Symposium on Plasma Chemistry" vol 3pp201--204.
  • 4Roth J R, Tsai P P, Liu C, Laroussi M and Spence P D 1995 One Atmosphere Uniform Glow Discharge Plasma, U.S. patent 5,414.304.
  • 5Tsai P P, Wadsworth L C and Both J B 1997 Textile Res. J. 67 359.
  • 6Gadri R B et al 2000 Surf. Coatings Technol. 131 528.
  • 7Massines F, Rabehi A, Decomps P, Gadri R B, Segur P and Mayoux C 1998 J. Appt. Phys. 83 29.50.
  • 8Massines F and Gouda G 1998 J. Phys. D: Appl. Phys. 31 3411.
  • 9Kunhardt E E 2000 IEEE Tram. Plasma Sci. 28 189.
  • 10Ward A L 1962 J. Appl. Phys. 33 2789.

同被引文献452

引证文献39

二级引证文献259

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部