摘要
在机器学习中,有两大类常见的问题,一类为回归问题,另外一类为分类问题。对于回归问题的解决,常见的方法有线性回归,随机森林等。而针对分类问题,有kNN,logsitic,SVM,神经网络等算法。不同的算法在不同的问题中具有不同的效果。因此,本研究通过具体的实例'泰坦尼克号乘客遇难预测',通过运用机器学习中的不同分类模型来分析乘客的存活是运气原因,还是存在一定的规律性。通过该对问题的研究,比较了不同机器学习分类模型的差异性以及优缺点。
出处
《青年与社会》
2019年第7期179-180,共2页
Young Society