期刊文献+

二维非定常Sine-Gordon方程辛算法及其孤子数值模拟 被引量:4

Symplectic Algorithm and Simulation of Solitons for Two-dimensional Non-stationary Sine-Gordon Equation
下载PDF
导出
摘要  在矩形域[-a,a]×[-a,a]内对微分算子L=2x2+2y2用5点差分格式将二维非定常Sine Gordon方程离散化为一个2×7992阶非线性Hamilton系统.对该系统使用Euler中心格式,得到一个非线性方程组.对此方程组建立迭代解法并给出了这个迭代方法的收敛条件和收敛速度.Sine Gordon方程单孤子和双孤子的数值模拟试验显示该辛算法是有效的. A 2×799\+2\|order nonlinear Hamiltonian system of two\|dimensional non\|stationary Sine\|Gordon equation is introduced when the five point difference scheme is used to discretize the differential operator L=\+2x\+2+\+2y\+2 in the rectangle [-a,a]×[-a,a]. An iterative method is designed to solve the nonlinear system, which is formed by using the centered Euler scheme for the Hamiltonian system. The condition and the velocity of convergence for this method are given. Numerical examples for evaluating one\|soliton and two\|soliton of the Sine\|Gordon equation show that the symplectic method is an efficient algorithm.
作者 蒋长锦
出处 《计算物理》 CSCD 北大核心 2003年第4期321-325,共5页 Chinese Journal of Computational Physics
关键词 二维非定常Sine-Gordon方程 辛算法 孤子 辛格式 HAMILTON系统 迭代法 Sine-Gordon equation Hamiltonian system symplectic scheme soliton
  • 相关文献

参考文献4

  • 1冯康,秦孟兆.Hamilton动力体系的Hamilton算法[J].自然科学进展(国家重点实验室通讯),1991,1(2):102-112. 被引量:46
  • 2Radha R, Lakeshmanan M. The (2 + 1 )-dimensional Sine-Gordon equations ; integrability and localized solutions [ J ] .J Phys A:Math Gen, 1996,29:1551.
  • 3Feng Kang. On difference schemes and symplectic geometry[A]. In: Feng K, ed. Proceedings of the 1984 Beijing symposium on differential geometry and differential equations, computation of partial differential equations [ C ].Beijing: Science Press, 1985.42.
  • 4Feng Kang, Wu Huamo, Qin Mengzhao. Symplectic difference schemes for linear Hamiltonian canonical systems [ J].Journal of Computational Mathematics. 1990, 8(4) :371.

共引文献45

同被引文献47

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部